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2.l Principal Stress and Strain

Theory at a Glance (for IES, GATE, PSU)
2.1 States of stress

® Uni-axial stress: only one non-zero Area

principal stress, i.e. 01 ,ﬂf"/ //‘

Right side figure represents Uni-axial state of 1
a1

stress. g

® Bi-axial stress: one principal stress o
equals zero, two do not, i.e. 01 >03; 02=0

Right side figure represents Bi-axial state of _ .

stress. oA

® Tri-axial stress: three non-zero oz

principal stresses, i.e. 01 > 02 > 03 A

Right side figure represents Tri-axial state of

stress. - /

T3
oz

® Jsotropic stress: three principal i
e

stresses are equal, 1.e. 01 = 02 = 03

Right side figure represents isotropic state of —

stress. e /

® Axial stress: two of three principal }///S'

stresses are equal, i.e. 01 = 02 or 02= 03 //
Right side figure represents axial state of S
stress.
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Chapter-2 Principal Stress and Strain

® Hydrostatic pressure: weight of column of

fluid in interconnected pore spaces. G

Phydrostatic = privia gh (density, gravity, depth)

® Hydrostatic stress: Hydrostatic stress is a /

used to describe a state of tensile or o r
compressive stress equal in all directions

within or external to a body. Hydrostatic

stress causes a change in volume of a ¢
material. Shape of the body remains %
unchanged i.e. no distortion occurs in the —

body. o

Right side figure represents Hydrostatic state of G

stress.

2.2 Uni-axial stress on oblique plane

Let us consider a bar of uniform cross sectional area A under direct tensile load P giving rise to axial
normal stress P/A acting on a cross section XX. Now consider another section given by the plane YY

inclined at & with the XX. This is depicted in following three ways.

Fig. (c)

Area of the YY Plane =

; Let us assume the normal stress in the YY plane is O, and there is

coséd n
a shear stress T acting parallel to the YY plane.
Now resolve the force P in two perpendicular direction one normal to the plane YY = Pcosé and

another parallel to the plane YY = PcosB
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Chapter-2 Principal Stress and Strain

Therefore equilibrium gives, o, = Pcost or
cosd
. P .
and 7TX =Psin& or 7=—sinfcosf or
cos A
°

Note the variation of normal stress O 0 and shear stress T with the variation ofé.

When 6 =0, normal stress 0, is maximum i.e. (o, )max =— and shear stress7=0. As 6 is

! A

increased, the normal stress o, diminishes, until when8=0,0,=0. But if angle
. . . P z 0
0 increased shear stress 7increases to a maximum value 7, = 24 at 0= 7 =45° and then

diminishes to 7=0 at 8 =90°

The shear stress will be maximum when Sin26 =1 or 6 =45°

. P
And the maximum shear stress,

max =ﬂ

In ductile material failure in tension is initiated by shear stress i.e. the failure occurs across

the shear planes at 45° (where it is maximum) to the applied load.
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Chapter-2 Principal Stress and Strain

e Complementary stresses

Now if we consider the stresses on an oblique plane Y'Y’ which is perpendicular to the previous

plane YY. The stresses on this plane are known as complementary stresses. Complementary

normal stress is O, r: and complementary shear stress isT " The following figure shows all
the four stresses. To obtain the stresses O, r: and 7' we need only to replace & by 6+ 90’ in the

previous equation. The angle @+90° is known as aspect angle.

Therefore

It is clear O-r: +O'n ZK and T,=—T

i.e. Complementary shear stresses are always equal in magnitude but opposite in sign.

® Sign of Shear stress

For sign of shear stress following rule have to be followed:
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Chapter-2 Principal Stress and Strain
The shear stress T on any face of the element will be considered positive when it has a

clockwise moment with respect to a centre inside the element. If the moment is counter-

clockwise with respect to a centre inside the element, the shear stress in negative.
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Chapter-2 Principal Stress and Strain
c,=/5MPa
o, =25MPa

B r'=43.3MPa

7 = 433MPa
o, 175MPa

2.3 Complex Stresses (2-D Stress system)

i.e. Material subjected to combined direct and shear stress

We now consider a complex stress system below. The given figure ABCD shows on small element of

material
[ f
A .
Ly
—_—
A B

| .

. Tw/ \P Ty

I

I

| N B O

Oy l= T %Gx A
Tood ] L — — n
s Tuy
== D =— 1 C
b A
f! T]rx 1 Txy
‘L ¥ Oy
Oy
Stresses in three dimensional element Stresses in cross-section of the element

o, and o, are normal stresses and may be tensile or compressive. We know that normal stress

may come from direct force or bending moment. 7 xy is shear stress. We know that shear stress may
comes from direct shear force or torsion and 7 xy and 7 yx are complementary and

T = Tyx

Let 0, isthe normal stress and 7 is the shear stress on a plane at angle 0.
Considering the equilibrium of the element we can easily get
c.+to, 0,-0

Normal stress(an) == ~c0s20+ 17, sin26

and

, 0

o
Shear stress(z) = Tysinze - 7,,C0S20

Above two equations are coming from conslijderiS%g f(i%lilibrium. They do not depend on material
age 590

properties and are valid for elastic and in elastic behavior.



Chapter-2 Principal Stress and Strain

¢ Location of planes of maximum stress

(a) Normal stress, (O'n )max

For 0, maximum or minimum

9% _ ), where o, = (. ;GY) + ( ;Gy)cos20+rxy sin26
or —Lay)x(sinZH)x2+rx (cos20)x2=0 or tan26,= i
2 ’ ’ (o, -0,)

(b) Shear stress, 7,

For 7 maximum or minimum

or =0, where 7 = % sin20-r,, cos20
06 2 v

or & 20y (cos20)x2-7,,(-sin20)x2=0

Ty

or cot26 =

o,—0,
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Chapter-2 Principal Stress and Strain
I'ﬂ’:.n =15 MPa

B
1 = 10 MPa

ax =30 MPa
Fa

C

2.4 Bi-axial stress

Let us now consider a stressed element ABCD where 7,, =0, ie. only o, and o, is there. This type

of stress is known as bi-axial stress. In the previous equation if you put 7,, =0 we get Normal stress,

o, and shear stress, 7 on a plane at angle 6.

o +0o, O, —0O Oy
e Normal stress, 0, = — > Ly 5 L cos20 I
A B
_ o, -0, . « \P
e Shear/Tangential stress, 7 = Tsm 20
. . o
0 G 0 .
e For complementary stress, aspect angle = &+ 90 .
e Aspect angle ‘0’ varies from 0 to 77/2 o .
e Normal stress o, varies between the values [
Oy

0.(0=0)& o, (0=7/2)

Page 61 of 429



Chapter-2 Principal Stress and Strain

]Ur=5ﬂ MPa
A B
r=16KIFPa
- | =95 a% .
Ox ki ax =100 MPa
o, =94MPa

® We may derive uni-axial stress on oblique plane from

_o.,+0, 0,0

o, = + L cos260+17_, sin26
2 2 g
d 6,—60, .
M= Y in20 - r_cos26

2 Xy

Just put o, =0 and 7,,=0 A 5 B
T

Therefore,

— 1 —
an=0"+0+a" Ocosze=1ax(1+c0320)=axcosz0 Ox B O

2 2 2 Gy

and 7 = G"z_osin2¢9=%sin29 D C

2.5 Pure Shear

® Pure shear is a particular case of bi-axial stress where

Note: o, or o, which one is compressive that is immaterial but one should be tensile and

other ~should be compressive and equal magnitude. If o, =100MPathen

o, mustbe—100MPa otherwise if o, =100MPa then o, mustbe—100MPa .

® |n case of pure shear on 45° planes

. — ' —
; 0,=0 and o =0
® We may depict the pure shear in an element by following two ways
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Chapter-2 Principal Stress and Strain

(a) In a torsion member, as shown below, an element ABCD is in pure shear (only shear
stress is present in this element) in this member at 45° plane an element A'B'C'D'is also

in pure shear where o, =—0, but in this element no shear stress is there.

(b) In a bi-axial state of stress a member, as shown below, an element ABCD in pure shear

where o, =—0, but in this element no shear stress is there and an element A'B'C'D" at

45° plane is also in pure shear (only shear stress is present in this element).

lﬁ-,-:—ijx:—’[ A
A B
T/ T
o=t — -1 D 5
1 . N\ A/
TG}-: -0 = —T C'

Let us take an example: See the in the Conventional question answer section in this chapter and

the question is “Conventional Question IES-2007”

2.6 Stress Tensor

® State of stress at a point ( 3-D)

Stress acts on every surface that passes through the point. We can use three mutually
perpendicular planes to describe the stress state at the point, which we approximate as a cube
each of the three planes has one normal component & two shear components therefore, 9
components necessary to define stress at a point 3 normal and 6 shear stress.

Therefore, we need nine components, to define the state of stress at a point

For cube to be in equilibrium (at rest: not moving, not spinning)
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Chapter-2
Tox
—=— Ty = Ty If they don’t offset, block spins therefore,
T, = T, only six are independent.
r
XE fyz = sz

Oy 01 Oy

O yx xy xz Tax z-xy Txz Oy Xy xz
o;,=\o, o0, O,|O 1,=\1, T, T,|=|T, O, T,|=|0y Op Oy
O-zx O-zy O-zz sz sz z-zz sz zy O-z 0-3 1 0-32 O-33

This is the stress tensor
Components on diagonal are normal stresses; off are shear stresses

Z
O-Z
i 1,/’2" / Y
Tax s, “
=— Txy
*yx
O-X
/ r:;zl\ I}fz
O'},
-
0 X
® State of stress at an element (2-D)
& a5y
AT
Ty
Jy = -0 Oy
D =—1—— C

2.7 Principal stress and Principal plane
When examining stress at a point, it is possible to choose three mutually perpendicular

[ ]
planes on which no shear stresses exist in three dimensions, one combination of
orientations for the three mutually perpendicular planes will cause the shear stresses on all

three planes to go to zero this is the state defined by the principal stresses.
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Chapter-2 Principal Stress and Strain
o Principal stresses are normal stresses that are orthogonal to

each other
e Principal planes are the planes across which principal
stresses act (faces of the cube) for principal stresses (shear

stresses are zero)

e Major Principal Stress

¢ Minor principal stress

e Position of principal planes

e Maximum shear stress
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Chapter-2 Principal Stress and Strain

ReferencePlane BC
S

o, ~51.4MPa

o, =-111.4MPa
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Chapter-2 Principal Stress and Strain

2.8 Mohr's circle for plane stress
o The transformation equations of plane stress can be represented in a graphical form which is
popularly known as Mohr's circle.
o Though the transformation equations are sufficient to get the normal and shear stresses on

any plane at a point, with Mohr's circle one can easily visualize their variation with respect

to plane orientation 0.

o Equation of Mohr's circle

o,+to, o,-0
2

We know that normal stress, o, = + 3 L cos260 + T, sin 20

. Gx Gy .
And Tangential stress, T = Tsm29 -T,, 0826

' o.+0,| o0,-0, ) '
Rearranging we get, | 0, — 5 = 3 c0s20+7,,8in20 ............... @)

Gx 6y . ..
and T= TstO -T,00820 ... (ii)

A little consideration will show that the above two equations are the equations of a circle with o,

and T as its coordinates and 20 as its parameter.

If the parameter 20 is eliminated from the equations, (i) & (ii) then the significance of them will

become clear.

o, +o o, -0
O'avg=—x2 ~and R = —xz ol I

Or (0' -0 )2+1'2 =R’

n avg Xy

It is the equation of a circle with centre,
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Chapter-2 Principal Stress and Strain
2

O —0O
X y +T2

2 xy

and radius, R=

e Construction of Mohr’s circle

Convention for drawing

o AT Xy that is clockwise (positive) on a face resides above the O axis;a T Xy
anticlockwise (negative) on a face resides below O axis.

® Tensile stress will be positive and plotted right of the origin O. Compressive stress

will be negative and will be plotted left to the origin O.

® An angle @ on real plane transfers as an angle 2 @ on Mohr's circle plane.

We now construct Mohr’s circle in the following stress conditions

I. Bi-axial stress when O, and O'y known and Txy =0
II. Complex state of stress (O, Gy and Z'Xy known)
I. Constant of Mohr’s circle for Bi-axial stress (when only O, and Gy known)
If 0, and O y both are tensile or both compressive sign of O, and O y will be same and this state of

stress is known as “ like stresses” if one is tensile and other is compressive sign of O, and O y will

be opposite and this state of stress is known as ‘unlike stress’.

® Construction of Mohr’s circle for like stresses (when O, and O, are same type of stress)
Step-I: Label the element ABCD and draw all stresses.

D A
O  Tox
C B

l Ty

Step-II: Set up axes for the direct stress (as abscissa) i.e., in x-axis and shear stress (as
ordinate) i.e. in Y-axis
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Chapter-2 Principal Stress and Strain

T

Step-I1I: Using sign convention and some suitable scale, plot the stresses on two adjacent faces
e.g. AB and BC on the graph. Let OL and OM equal to O, and O'y respectively on the
axis 0O .

_'t‘

Step-IV: Bisect ML at C. With C as centre and CL or CM as radius, draw a circle. It is the
Mohr’s circle.

[
T
M L
- O ll\ Oy C |II Oy o
[ + ay)
P E—
_t 3

Step-V: At the centre C draw a line CP at an angle 20 , in the same direction as the normal to
the plane makes with the direction of O, . The point P represents the state of

stress at plane ZB.

Oy L]
! T
p—2% A
T a,
(3]
Oy a O
-G o
(s B
(e + ey)
Oy 2
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Chapter-2 Principal Stress and Strain

Step-VI: Calculation, Draw a perpendicular PQ and PR where PQ = 7 and PR = o,

T
R
I
Lo
= Of \o C Q [o ©
[V
DR S
-T
o, +0 O, — O
oc=—" Yandmc=cL=cp= >V
2 2
o, +0 O, — O
PR=an: X y+ X ycos29
2 2
O —Uy

PQ =7 =CPsin 20 = sin26

2
[Note: In the examination you only draw final figure (which is in Step-V) and follow the
procedure step by step so that no mistakes occur.]

® Construction of Mohr’s circle for unlike stresses (when G, and o, are opposite in sign)
Follow the same steps which we followed for construction for ‘like stresses’ and finally will get

the figure shown below.

D Z A
T D-n
2]
s e —

8 Ox , I .
-3 I'-. s O T

cC B

_‘t A

Note: For construction of Mohr’s circle for principal stresses when (Oyand O, is known) then follow
the same steps of Constant of Mohr’s circle for Bi-axial stress (when only O, and O y known) just

change the O

= O'1and O'y =0,
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Chapter-2 Principal Stress and Strain
L

II. Construction of Mohr’s circle for complex state of stress (o, O'y and Z'Xy known)

Step-I: Label the element ABCD and draw all stresses.

L. G}
T
» 1
D A
rX}'
O O
Ty
oy a— —
Ty
y Oy

Step-II: Set up axes for the direct stress (as abscissa) 1.e., in x-axis and shear stress (as
ordinate) 1.e. in Y-axis

A

T

Step-I1I: Using sign convention and some suitable scale, plot the stresses on two adjacent faces
e.g. AB and BC on the graph. Let OL and OM equal to O, and O y respectively on the

axis O O . Draw LS perpendicular to OO0 axis and equal to Txy de. LS= Txy . Here LS
is downward as T xy o0 AB face is (- ive) and draw MT perpendicular to OO axis and

equal to Z'Xy 1e. MT= Z'Xy . Here MT is upward as Z'Xy BC face is (+ ive).

Page 71 of 429



Chapter-2 Principal Stress and Strain

T

Step-IV: Join ST and it will cut OO axis at C. With C as centre and CS or CT as radius, draw
circle. It i1s the Mohr’s circle.

Step-V: At the centre draw a line CP at an angle 26 in the same direction as the normal to the

plane makes with the direction of O X

Z\ ., K .
Oy B Ox
& h
] B
Oy

Step-VI: Calculation, Draw a perpendicular PQ and PR where PQ = 7 and PR = 0,
o, +0 y

Centre, OC =
2

c,—O
Radius CS = (CL)2+(LS)2 = [XzyJ +7xy2 =CT=CP

Gx+6y GX—Gy .
PR_on_ 5 + 5 00329+1Xysm20

Ox—Oy .
PQ=71= —">—2-sin26-1,, c0S206.
2 Xy

[Note: In the examination you only draw final f%ure £(which is in Step-V) and follow the
Page 72 of 42
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Chapter-2 Principal Stress and Strain

Note: The intersections of OO axis are two principal stresses, as shown below.

Let us take an example: See the in the Conventional question answer section in this chapter and

the question is “Conventional Question IES-2000”

2.9 Mohr's circle for some special cases:

i) Mohr’s circle for axial loading:

D
L) P

] ] o . e ' )
B C a
Tr \

z'xsz; o,=0,=0 "-Ti
It is a case of pure shear

iii) In the case of pure shear T

(01= - 02and 03 e 73 of 429



Chapter-2 Principal Stress and Strain

c,=-0,

T o = X0,

max

iv) A shaft compressed all round by a hub

VL

I

01 = 02 = 03 = Compressive (Pressure)

v) Thin spherical shell under internal pressure

D
o, =0, =L = Z—t (tensile)

2t

o, = E = % (tensile) and o, = ﬂ = g—: (tensile)

4t

vii) Bending moment applied at the free end of a cantilever
M

rd

M
Only bending stress, o, = Ty and 0, =7,, =0
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Chapter-2 Principal Stress and Strain
2.10 Strain

Normal strain

Let us consider an element AB of infinitesimal length &x. After deformation of the actual body if

: : . ou L : .
displacement of end A is u, that of end B is u+a—.5X. This gives an increase in length of element AB
X

: ou ou . T ou
is| U+—.0X -U |= — X and therefore the strain in x-direction is &, = —
OX X
. . L ov
Similarly, strains in y and z directions are & =—— and g, =—.
OX 0z
Therefore, we may write the three normal strain components
ou ov ow
gxz_’ gy:—, and 822—.
ox oy 0z
ou _
U+ =—0X
[ oX
_ B |
oX
1 All IH
o—]

Change in length of an infinitesimal element.
Shear strain

Let us consider an element ABCD in x-y plane and let the displaced position of the element be

A'B'C'D' .This gives shear strain in x-y plane asy, =oc +f where o is the angle made by the

displaced live B'C'with the vertical and f is the angle made by the displaced line A'D’with the

ou ov
&5y ou 67 X oy
horizontal. This givesc = “>—=—and f=*2——=—
oy oy OX OX
We may therefore write the three shear strain components as
ou ov. ov ow ow ou
Yy=—t—r Vp=—+— and y, =—+_—
oy ©Ox oz oy oXx 0z

Therefore the state of strain at a point can be completely described by the six strain components
and the strain components in their turns can be completely defined by the displacement components

u,v, and w.

Therefore, the complete strain matrix can be written as

Page 75 of 429



Chapter-2 Principal Stress and Strain

2 0 0
19).4
P I
X ay
&
"I'lo o <2
gz _ 0z L
Vxy o 9 0
Ve ox oy
y o 9
i oy oz
9 5 9
| 0z OoX
v
11——r5}'
fu .
o 9¥
C‘__' w
8 B C
Vo
el B .
:%L/ Lr A
VI : | ax

SR
cu

u+—0ax
ox

Shear strain associated with the distortion of an infinitesimal element.

Strain Tensor
The three normal strain components are
e, =&, = @ = Ov @
X XX ax’ y yy ay z 2z az .

The three shear strain components are

:yi:l 8_U+6_V : c :&:l a_V+@ and €, = yzle a_U+aW
oy 0OX

e —
vo2 02 ¥ 2 2\oz oy 2 2\oz ox
Therefore the strain tensor is
_ v ) _
EXX 2 52
Sxx exy Sxz
— _ v yx e yz
Sl S €z | T Sy 2
Ex ezy € 4 }/zy
ZX
A eZZ

Constitutive Equation

The constitutive equations relate stresses and strains and in linear elasticity. We know from the

Hook’s law (O') =E.¢
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. . o, . . .
It is known that o, produces a strain of EX in x-direction

. . o, . . . o, . . .
and Poisson’s effect gives —,uEX in y-direction and —,uEX in z-direction.

Therefore we my write the generalized Hook’s law as
e=r[o,-u(o,+a.)]. e =r[o,-u(o.+5,)] and e=—[o. -u(c, +0)]
E > F E )

It is also known that the shear stress, 7 = Gy, where G is the shear modulus and ¥ is shear strain.
We may thus write the three strain components as
Fry bye and y, = T

g’ TG G

In general each strain is dependent on each stress and we may write

Yy =

K,; K
&y Kz Koo Ko Koy KsKyg |19y
& | _ Kai Kaz Ko Kyy Kys Ky || 0,
Vxy Kot Ko Kz Ky Kis Ky | |7y
Vyz Koy Kyp Koy Koy Kos Ky Ty
Y ax _K61 K62 K63 K64 Kes Kee_ T

.. The number of elastic constant is 36 (For anisotropic materials)

For isotropic material

1
K11 :Kzz = K33 :E
1
Kas =Kss =Kos :5
Kip =K =Kyy =Kpy =Ky =K, = £
12 13 21 23 31 32

E

Rest of all elements in K matrix are zero.

For isotropic material only two independent elastic constant is there say E and G.

e 1-D Strain L, .
-(:.—[ A, — P
Let us take an example: A rod of cross sectional area Ao is I i =
loaded by a tensile force P. ' L
, P
It’s stresses o, =A—, o, = 0, and o,=0

1-D state of stress or Uni-axial state of stress

o, 00 z, 0 0 o, 00
o;={ 0 0 Ojorg;=0 0 O0|=0 00O
0 0O 0 0O 0 00O

Therefore strain components are
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Chapter-2 Principal Stress and Strain

_ 0, O, _ x
Ex_ E ;Ey:—/,l =—HE,: and Ez__ll“l E —_IUEX
1-D state of strain or Uni-axial state of strain
9% 9 0
& 0 0 E p, 0 0O
g=|0 -us, 0 |=|0 —yi_x 0 |=|0 g, ©
0 0 —ue, . . o, 0 0 gq,
e 2-D Strain (0. =0)
1
@) Ex—EI:O'x—,UO'y}
| ]
Ey_f O'y—,UO'x

z

€ :—%[ax +Gy:|

[Where, €,,€,,€, are strain component in X, Y, and Z axis respectively]

(ii) O, =#|:€x +,Ll€y:|
o, —ﬁ[ey +e,]

e 3-D Strain

(i) e =

€,= |:O'Z—IL1(O'x+O' ):|
G 0, = (1+ﬂ)fl_2ﬂ)[(l—ﬂ) e +u(s, +e.)]
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Chapter-2 Principal Stress and Strain

o, = (1+,u)1(21—2,u) [(l—y) €, +,u(ez + ex)]
o, = (1+ﬂ)El_2ﬂ)[(l—,u) €, +ﬂ(€x +ey)}

2.12 An element subjected to strain components < ,e ) &%‘y

Consider an element as shown in the figure given. The strain component In X-direction is €, , the

strain component in Y-direction is €, and the shear strain component is Yy -

y

Now consider a plane at an angle & with X- axis in this plane a normal strain €,and a shear

strain y,. Then

€ +e€ € —¢€
¢ €,= x2 L4 x2 ycos20+77xysin26? o
ef—j {;&ex
e —¢€ e
. Q:—Msin29+y—xyc0520 ge
2 2
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Chapter-2 Principal Stress and Strain

We may find principal strain and principal plane for strains in the same process which we
followed for stress analysis.
In the principal plane shear strain is zero.

Therefore principal strains are

e+ e e —€
e Bt R
T2 2 2

The angle of principal plane

j/xy

tan2¢9p =

¢ Maximum shearing strain is equal to the difference between the 2 principal strains i.e

(yxy )max :El o EZ

Mohr's Circle for circle for Plain Strain
We may draw Mohr’s circle for strain following same procedure which we followed for drawing

Mohr’s circle in stress. Everything will be same and in the place of O, write €, , the place of

yxy

o} y write € y and in place of T Xy write
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X
2 Sy
Sy .
y D
& __,_,--""'_'_T_'_" 1
|
r | _
'?';.:_-5.- [ ! Pl R: Tm;:': - 51 EE:
2 T:':"!f :
2 o 1 .
2 | 26 try 1 e
: 78 ) L J . Ty
& R 7
I L 4
I__|_:.._,.-"" "
g, +E, _ gy +E, _ £ +E, - e —e =, -y
2 2 2 " il
= ‘
=
<1
2.15 Volumetric Strain (Dilation)
e Rectangular block, L
AV /
V_ —EX + Ey + EZ L
0
L
Proof: Volumetric strain L(1+2,)
L L
AV V-V ’ .
_— 0 |_1+3}_._|
VE) VO L - LN |
+z,
L(1+&)xL(l+e )xL(1+e )L L

= I
Before deformation,

=€, t€, e,
Volume (Vo) = 13

(neglecting second and third order
term, as very small)

e In case of prismatic bar,

After deformation,

Volume (V)
= L(1+g)xL(1+¢,)xL(1+¢,)

dv L .
Volumetric strain,—— =& (1 -2 /J) P P ¢ A s P
v .
Proof: Before deformation, the volume of the P < :[ T: | >P

bar, V=AL
After deformation, the length (L') =L (1 + 8)

and the new cross-sectional area (A') =A (1 - ,ug)2

N _ Al '= _ 2
Therefore now volume (V ) =A'L Papélé Q tfﬁ%gp ,ug)
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AV V'V AL(1+¢)(1-ue) AL

=e(1-2
VAR, AL #(1-24)
AV
—=g(1-2
v -¢(1-24)
e Thin Cylindrical vessel
o . O o pr
€ 1=Longitudinal strain =—— y—=-"—[1-2
Tons g HE "aml
€, =Circumferential strain =22 — 4,21 = ﬂ[2 - u]
E E 2Kt

AV pr
—=€,+2e,=—[5-4
v I 2 2Et[ (]

o

® Thin Spherical vessels

r
€=& =6~ p_[l_ﬂ]

2Ft
£:3e=3ﬂ 1- 4]
v, 2Et

® In case of pure shear

Therefore

dv
Therefore ¢, =—=¢, +¢,+¢,=0
v

2.16 Measurement of Strain

Unlike stress, strain can be measured directly. The most common way of measuring strain is by use

of the Strain Gauge.

Strain Gauge
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A strain gage is a simple device, comprising of a thin

electric wire attached to an insulating thin backing
material such as a bakelite foil. The foil is exposed to the

surface of the specimen on which the strain is to be

—

measured. The thin epoxy layer bonds the gauge to the | ——

Thin foil
or electric
were part of the specimen being strained. wire

surface and forces the gauge to shorten or elongate as if it

A change in length of the gauge due to longitudinal strain

creates a proportional change in the electric resistance, ' .
and since a constant current is maintained in the gauge, a + =

proportional change in voltage. (V = IR).

-H-hl—
The voltage can be easily measured, and through Bakelite

calibration, transformed into the change in length of the

original gauge length, i.e. the longitudinal strain along the STRAIN GAUGE
gauge length.

Strain Gauge factor (G.F)

Measured from Bridge voltage

—
GF_:ARIR:ARIR
~ AETE £ o

Given Calculated

The strain gauge factor relates a change in resistance with strain.

Strain Rosette

The strain rosette is a device used to measure the state of strain at a point in a plane.

It comprises three or more independent strain gauges, each of which is used to read normal strain
at the same point but in a different direction.

The relative orientation between the three gauges is known as o, p and &

The three measurements of normal strain provide sufficient information for the determination of the
complete state of strain at the measured point in 2-D.

We have to find out €,, €, and y,, form measured value €,, €,, and €,
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General arrangement:

The orientation of strain gauges is given in the ED\ ‘Y
figure. To relate strain we have to use the

following formula.

+ _
€= S ST 0520+ D2 sin26 <o
2 2 2 EC | Ea‘
Ler
+ _
€,= S ST o520 + D sin2a & X
2 2 2 O
+ _
Eb_ex Ey +€X ey Cosz(a+ﬂ)+7isin2(a+ﬂ)
2 2 2
+ _
.= zey = zey Cosz(a+ﬂ+5)+%sin2(a+ﬁ+5)

From this three equations and three unknown we may solve €,, €, and y,,

e Two standard arrangement of the of the strain rosette are as follows:

(i) 45° strain rosette or Rectangular strain rosette.
In the general arrangement above, put y
a=0° p=45° and o =45°
Putting the value we get Je
[ ] ea:ex b
SHECTEN .
o ¢ =— v
2 2 = X
a
® e.=¢
ii strain rosette or Delta strain rosette
(i)  60°strai tt Delta strai tt
In the general arrangement above, put /\y
a=0°% p=60° andJs=60°
Putting the value we get b
* €,=€, c
e +3e, 3 60’ 120°
x y
Ey=——+—— = >
tSTTy 4 T 2 >
€ +3¢€, 3 or
e E=—"————y.
c 4 4 Xy Y
Solving above three equation we get
S TS

1
Ey=§|:2.eh +2.5, -5

2
Ky_ﬁie\c _EI:-:I
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 20-Years GATE Questions

Stresses due to Pure Shear

GATE-1. A block of steel is loaded by a tangential force on its top surface while the
bottom surface is held rigidly. The deformation of the block is due to
[GATE-1992]
(a) Shear only (b) Bending only  (c) Shear and bending (d) Torsion
GATE-1. Ans. (a) It is the definition of shear stress. The force is applied tangentially it is not a
point load so you cannot compare it with a cantilever with a point load at its free end.

GATE-2. A shaft subjected to torsion experiences a pure shear stress 7 on the surface.
The maximum principal stress on the surface which is at 45° to the axis will

have a value [GATE-2003]
(a) 7 cos 45° (b) 27 cos 45° (c) 7 cos? 45° (d) 2 7 sin 45° cos 45°
o,+o, O0,-0O .
GATE-2. Ans. (d) o, = 5 L+ 5 Lc0s20 +1,,5in20

Here 0, =0, =0, 7, =7, §=45°

GATE-3. The number of components in a stress tensor defining stress at a point in three
dimensions is: [GATE-2002]
(a) 3 (b) 4 (c)6 @9

GATE-3. Ans. (d) It is well known that,

Ty =TT =Tx @nd 7, =7,

so that the state of stress at a point is given by six components 0,,0,,0, andr, 7,7

xy? “yzrtzx

Principal Stress and Principal Plane

GATE-4. A body is subjected to a pure tensile stress of 100 units. What is the maximum
shear produced in the body at some oblique plane due to the above? [IES-2006]
(a) 100 units (b) 75 units (c) 50 units (d) O unit
GATE-4. Ans. (¢) 7, =2 ;”2 = 1002_0 = 50 units.

GATE-5. In a strained material one of the principal stresses is twice the other. The
maximum shear stress in the same case is 7_,, .Then, what is the value of the

maximum principle stress? [TES 2007]
(a) Tmax (b) 2 Tmax (C) 4 Tmax (d) 8 Tmax

0,0,

GATE-5. Ans. (¢) 7,,, = or c=20,=47,

X

lo
_ % -
,0,=20,0r7,, = 5 o o, =27,

GATE-6. A material element subjected to a plane state of stress such that the maximum
shear stress is equal to the maximum tensile stress, would correspond to
[TAS-1998]
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G,T G,T 51

o o] o a] o] a, 5'1 GI 1
@ “l “I “J
(b) (© (d)
GATE-6. Ans. (d) 7, = ;"2 =2 _;_"1) -0,

GATE-7. A solid circular shaft is subjected to a maximum shearing stress of 140 MPs.
The magnitude of the maximum normal stress developed in the shaft is:
[TAS-1995]
(a) 140 MPa (b) 80 MPa (c) 70 MPa (d) 60 MPa

GATE-7. Ans. (a) 7, =—. ;Gz

Maximum normal stress will developed if o, =—0, =0

GATE-8. The state of stress at a point in a loaded member is shown in the figure. The

magnitude of maximum shear stress is [IMPa = 10 kg/cm?2] [TAS 1994]
(a) 10 MPa (b) 30 MPa (c) 50 MPa (d) 100MPa
1o, = 408Pa

— 4~ 7 =30MPa

G, = -40MPa o, =—40MPa

£, =30MPa~ |
o, = A0MPa

v

2 2
O,—0O — —
GATE-8. Ans. (¢) 7,,, = (%} + z'xyz = \/ #j +30? =50 MPa

GATE-9. A solid circular shaft of diameter 100 mm is subjected to an axial stress of 50
MPa. It is further subjected to a torque of 10 kNm. The maximum principal

stress experienced on the shaft is closest to [GATE-2008]
(a) 41 MPa (b) 82 MPa (c) 164 MPa (d) 204 MPa

16T 16x10000

5 +Pa=50.93 MPa
d 7x(0.1)

GATE-9. Ans. (b) Shear Stress (7 )=
O O, ?
Maximum principal Stress = 7” + (7[’) +17° =82 MPa

GATE-10. In a bi-axial stress problem, the stresses in x and y directions are (ox = 200 MPa

and oy =100 MPa. The maximum principal stress in MPa, is: [GATE-2000]
(a) 50 (b) 100 (c) 150 (d) 200
o, +o o, — 0O ? )
GATE-10. Ans. (d) g, = L4 [ yj +72 if 7, =0
2 2 xy Xy
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2
o, t+o, [GX—O'V]
= =+ =0

2 2 *
GATE-11. The maximum principle stress for the stress a
state shown in the figure is 4
(@) o M) 20 4 >0
()30 (d) 150
T a
o~ |

[GATE-2001]
GATE-11. Ans. (b) 0, =0, 0,=0, 7, =0

Xy
2
o, + O O, — O, o+ o 2
(07), = > L+ [ 5 y] +72, = 5 +4/(0)" +0% =20

GATE-12. The normal stresses at a point are ox = 10 MPa and, oy = 2 MPa; the shear stress

at this point is 4MPa. The maximum principal stress at this point is:
[GATE-1998]

(a) 16 MPa (b) 14 MPa (c) 11 MPa (d) 10 MPa
2 2
GATE-12. Ans. (¢) o, = 2%y [Zx=% | o0 1042 F10=21 4o 44 66 MPa
2 2 Y 2 2
GATE-13. In a Mohr's circle, the radius of the circle is taken as: [TES-2006; GATE-1993]
(o2 (o) ? (U (o2 )2
.~ O, 2 .0, 2
(@) (Tj +(z,) 0 > (z,)

© (%Jz ~(z,) @ \(o.-0,) +(z,)

Where, ox and oy are normal stresses along x and y directions respectively and txy is the

shear stress.
GATE-13. Ans. (a)

Y By
A Oy
c
—_ N
N
[s;
r X - N (T Tyx)
0 it
al
Ty N
T: p B( Smax,0)
ﬂ Al(Tmin,0) 0 L Oyx
L | 20 M
M (Ox Tuy)

GATE-14. A two dimensional fluid element rotates like a rigid body. At a point within the
element, the pressure is 1 unit. Radius of the Mohr's circle, characterizing the
state of stress at that point, is: [GATE-2008]
(a) 0.5 unit (b) 0 unit (c) 1 unit (d) 2 units

GATE-14. Ans. (b)
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GATE-15. The Mohr's circle of plane stress ({MPa)
for a point in a body is shown.
The design is to be done on the

basis of the maximum shear
stress theory for yielding. Then,
a(MPa)

yielding will just begin if the
designer chooses a ductile ‘u
material whose yield strength is: -10

(a) 45 MPa (b) 50 MPa -100
() 90 MPa (d) 100 MPa

[GATE-2005]

GATE-15. Ans. (¢)
Given o¢,=-10MPa, o, =-100MPa
Maximum shear stresstheory give 7, = i ;GZ = %

or 0,-0, =0, = &, =—10—(~100) = 90MPa

stress at a certain point in a
stressed body. The magnitudes of
normal stresses in the x and y
direction are 100MPa and 20 MPa
respectively. The radius of < Xy
Mohr's stress circle representing
this state of stress is:

(a) 120 (b) 80
-

GATE-16. The figure shows the state of +(5
Y

(c) 60 (d) 40

[GATE-2004]

GATE-16. Ans. (c)
o, =100MPa, o, =-20MPa

) , o,—o, 100-(-20)
Radius of Mohr'scircle = 5 y = >

Data for Q17-Q18 are given below. Solve the problems and choose correct answers.
[GATE-2003]

The state of stress at a point "P" in a two dimensional loading is such that the Mohr's
circle is a point located at 175 MPa on the positive normal stress axis.

=60

GATE-17. Determine the maximum and minimum principal stresses respectively from the
Mohr's circle

(a) + 175 MPa, —175MPa (b) +175 MPa, +175 MPa
(c) 0, -175 MPa (do,0
GATE-17. Ans. (b) . T
‘ T, - :2 -0, =0,
: e, =
.‘— —'.x

o,=0,=0,=0,=+175 MPa

]

GATE-18. Determine the directions of maximum and minimum principal stresses at the
point “P” from the Mohr's circle F29¢ 88 of 429 [GATE-2003]
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(a) 0, 90° (b) 90°, 0 (c) 45°, 135° (d) All directions
GATE-18. Ans. (d) From the Mohr’s circle it will give all directions.

Principal strains

GATE-19. If the two principal strains at a point are 1000 X 106 and -600 x 106, then the
maximum shear strain is: [GATE-1996]
(a) 800 x 106 (b) 500 X 106 (¢) 1600 x 106 (d) 200 x 106
GATE-19. Ans. (c) Shear strain e, —e,, ={1000-(-600)} x 10° =1600 x 10°

Previous 20-Years IES Questions

Stresses due to Pure Shear

IES-1. If a prismatic bar be subjected to an axial tensile stress o, then shear stress

induced on a plane inclined at 0 with the axis will be: [TES-1992]
o . (o2 (o2 o .
(a)—=sin26 (b)=cos20 (c)=cos* 6 (d) =sin’@
2 2 2 2

IES-1. Ans. (a)

IES-2. In the case of bi-axial state of normal stresses, the normal stress on 45° plane is
equal to [TES-1992]
(a) The sum of the normal stresses (b) Difference of the normal stresses
(c) Half the sum of the normal stresses (d) Half the difference of the normal stresses

o,+o, 0,-0O .
IES-2. Ans. (¢) o, = 5 L+ 5 c0s20 +1,,5in20
o, +o

At0=45°andr,, =0; o, = 5 !

IES-3. In a two-dimensional problem, the state of pure shear at a point is
characterized by [IES-2001]
(@) ¢ =¢, and 7y =0 b) €, =-¢, and Vo %20
) &, =2¢,andy,, #0 (d) &,=05¢,andy,, =0

IES-3. Ans. (b)

IES-4. Which one of the following Mohr’s circles represents the state of pure shear?

[TIES-2000]

() (b)

]

\—/

T

N
/

i

o

IES-4. Ans. (¢)
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IES-5. For the state of stress of pure shear 7 the strain energy stored per unit volume
in the elastic, homogeneous isotropic material having elastic constants E and
v will be: [TES-1998]
2 2 2 2

T T 2T
(a) E(1+v) (b) E(Hv) (©) ?(lw) G\
IES-5. Ans. (a) o, =7, o0,=-1, 0,=0

_i 2 _ 2_ _ _1+/l 2
U—ZE[T +( z’) Zyz'( T)}V— 3 °V

2T—E(2+v)

IES-6. Assertion (A): If the state at a point is pure shear, then the principal planes
through that point making an angle of 45° with plane of shearing stress carries
principal stresses whose magnitude is equal to that of shearing stress.
Reason (R): Complementary shear stresses are equal in magnitude, but
opposite in direction. [IES-1996]
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
(¢) Aistrue but R is false
(d) Ais false but R is true

IES-6. Ans. (b)

IES-7. Assertion (A): Circular shafts made of brittle material fail along a helicoidally
surface inclined at 45° to the axis (artery point) when subjected to twisting
moment. [IES-1995]
Reason (R): The state of pure shear caused by torsion of the shaft is equivalent
to one of tension at 45° to the shaft axis and equal compression in the
perpendicular direction.

(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
(¢) Aistrue but R is false
(d) Ais false but R is true
IES-7. Ans. (a) Both A and R are true and R is correct explanation for A.

IES-8. A state of pure shear in a biaxial state of stress is given by [TES-1994]

o 0 o 0 o, T,
(a) (b) (c) (d) None of the above
0 o 0 -0 T, O,

IES-8. Ans. (b) 0,=7, o0,=-1, 0,=0

IES-9. The state of plane stress in a plate of 100 mm thickness is given as [IES-2000]
oxx = 100 N/mm?2, oyy = 200 N/mm?2, Young's modulus = 300 N/mm?2, Poisson's ratio
= 0.3. The stress developed in the direction of thickness is:

(a) Zero (b) 90 N/mm?2 (c) 100 N/mm? (d) 200 N/mm?

IES-9. Ans. (a)

IES-10. The state of plane stress at a point is described by o, =0 = oand T, = 0. The

normal stress on the plane inclined at 45° to the x-plane will be: [IES-1998]
(a)O' (b) \/50' (c)\/ga (d)20'
o,+o, 0,-0 )
IES-10. Ans. (a) o, = 5 L+ 5 ~-c0820 +7,, 5in20
IES-11. Consider the following statements: [IES-1996, 1998]

State of stress in two dimensions at a point in a loaded component can be
completely specified by indicating the normal and shear stresses on

1. A plane containing the point

2. Any two planes passing through the point

3. Two mutually perpendiculaiegsah@ddipassing through the point
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Of these statements
(a) 1, and 3 are correct (b) 2 alone is correct
(c) 1 alone 1s correct (d) 3 alone is correct
IES-11. Ans. (d)

Principal Stress and Principal Plane

IES-12. A body is subjected to a pure tensile stress of 100 units. What is the maximum
shear produced in the body at some oblique plane due to the above? [IES-2006]

(a) 100 units (b) 75 units (c) 50 units (d) 0 unit

IES-12. Ans. (¢) 7, = ;"2 = 1002‘0 =50 units.

IES-13. In a strained material one of the principal stresses is twice the other. The
maximum shear stress in the same case is 7., . Then, what is the value of the
maximum principle stress? [IES 2007]
(a) z-max (b) 2 2-max (C) 4 z-max (d) 8 z-max

o, -0 o

IES-13. Ans. (¢) 7,,, = %, o,=20,o0r 7, = ?2 or 0, =21, or c=20,=47,_

IES-14. 1In a strained material, normal stresses on two mutually perpendicular planes
are ox and oy (both alike) accompanied by a shear stress txy One of the principal
stresses will be zero, only if [IES-2006]

_ Gx X O-y _ _ d _ 2 2
(a) T, _T (b) r,=0,X0, (c) Ty =4 /O‘x xo, (d) T, =40, t0O,

2 2

2
+ —
it o, =0 30" o _ |99 i
2 2 Y

2 2
o, +0 o, — O
or X Y = X Y +12X or z, EN T
2 2 y y X y

o, +o, o, —0o, ? )
IES-14. Ans. (¢) o, = + +7,

IES-15. The principal stresses o1, 02 and o3 at a point respectively are 80 MPa, 30 MPa

and —-40 MPa. The maximum shear stress is: [TES-2001]
(a) 25 MPa (b) 35 MPa (c) 55 MPa (d) 60 MPa
IES-15. Ans. (d) 7, = ;GZ _80 _éJ'O) =60 MPa

IES-16. Plane stress at a point in a body is defined by principal stresses 30 and o. The
ratio of the normal stress to the maximum shear stresses on the plane of

maximum shear stress is: [TES-2000]
(@)1 (b) 2 (©)3 (d) 4
27,
IES-16. Ans. (b) tan20 = Y =60=0
o, —0,
c,-0, 30-0
Tmax = = =0
2 2
. .. . 3o0+o0
Major principal stress on the plane of maximum shear = o, = T =20
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IES-17.  Principal stresses at a point in plane stressed element are 0, =0, = 500 kg/cmz.

Normal stress on the plane inclined at 45° to x-axis will be: [IES-1993]
(a0 (b) 500 kg/cm? (c) 707 kg/cm?2 (d) 1000 kg/cm?
IES-17. Ans. (b) When stresses are alike, then normal stress on on plane inclined at angle 45° is

2 2
o,=0,c08’f+0,sin’ =0, (Lj +0o, (Lj =500 {%+%} =500kg/cm’

7)o\

IES-18. If the principal stresses corresponding to a two-dimensional state of stress are
0, and O, is greater than 0, and both are tensile, then which one of the

following would be the correct criterion for failure by yielding, according to

the maximum shear stress criterion? [TES-1993]
(01 -0, ) o, o, o, o, o,
a =+ b)—=1— c)—==x— d)o, =120
(a) 5 5 (b) 5 5 () 5 5 (d)o, »

IES-18. Ans. (a)

IES-19. For the state of plane stress. 10MPpg
Shown the maximum and L0Mpy

minimum principal stresses are:

(a) 60 MPa and 30 MPa _L

(b) 50 MPa and 10 MPa 50@;1‘ 50Mpg
(c) 40 MPa and 20 MPa

(d) 70 MPa and 30 MPa L0Mpg

10MPAa
[IES-1992]

o, +0 o, — O, ’ )
IES-19. Ans. (@) 0, == 1, | == | 7,

2 - 2

Onax =70 and o, =-30

2
. 50+(—10)+J(50+10j 407

IES-20. Normal stresses of equal magnitude p, but of opposite signs, act at a point of a
strained material in perpendicular direction. What is the magnitude of the
resultant normal stress on a plane inclined at 45° to the applied stresses?

[TES-2005]
@) 2p o) p/2 (©) pl4 () Zero
o, +o, 0,-0
IES-20. Ans. (d) o, = 5 L4 5 Y cos26
o, = P;P +PHP cos2x45 -0

IES-21. A plane stressed element is subjected to the state of stress given by

o,=1,=100 kgf/cm® and oy = 0. Maximum shear stress in the element is equal

to [TES-1997]

(a) 504/3 keflem? (b)100kgflem®  (c) 50v/5 kgflem®  (d)150kgf/em?
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2
IBS-21. Ans. (@) (o), = 20 J_r\/( Ux;Oj +73 =50F 5045

2

Maximum shear stress = M = 50\/§

IES-22. Match List I with List IT and select the correct answer, using the codes given

below the lists: [TES-1995]
List I(State of stress) List II(Kind of loading)
A. i 1. Combined bending and torsion of circular shalt.
| i
B. — 2. Torsion of circular shaft.

c. — 3. Thin cylinder subjected to internal pressure.

4. Tie bar subjected to tensile force.

Codes: A B C D A B C D
(@ 1 2 3 4 (b) 2 3 4 1
() 2 4 3 1 (d) 3 4 1 2
IES-22. Ans. (c)
Mohr's circle
IES-23. Consider the Mohr's circle shown TN

above:

What is the state of stress
represented by this circle?
(@)o,=0,#0,7,=0

b0+0y:O,z'xy¢0 _— —_> Cl'n

X
X

(b)
(c)o, =0, o, =7, #0
(d)

d)o ;t0,0'y :Txy:0

X

[TES-2008]
IES-23. Ans. (b) It is a case of pure shear. Just put o, =-0,
IES-24. For a general two dimensional stress system, what are the coordinates of the
centre of Mohr’s circle? [1]
()O'X—O'y 0 (b) 0 o, t+0, ()O'x+0'y 0 @0 o,—0,
a - ) ) - C - ) b -
2 2 2 2

IES-24. Ans. (c¢)

IES-25. In a Mohr's circle, the radius of the circle is taken as: [TES-2006; GATE-1993]

-0, ) (0.-0,)
(a) [%} +(TxY)2 (b) \/%JF(TW)Z

2
o,—0
(C) { 2 y J B (Txy )2 Page 93 of 429 (d) \/( Ox ™ O-)’ )2 + (Txy )2
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Where, ox and oy are normal stresses along x and y directions respectively and txy is the
shear stress.

IES-25. Ans. (a)

Ty
I
& Oy
C
S BN
N r OxXx
X N/ (5,
0 M | (Byy ., Tyx)
TXY NI
Tyx o B(%max.0)
v Al(omin,0) 0 P Cye
20 M
M(Oux .Tuy)
IES-26. Maximum shear stress in a Mohr's Circle [TES- 2008]
(a) Is equal to radius of Mohr's circle (b) Is greater than radius of Mohr's circle
(c) Is less than radius of Mohr's circle (d) Could be any of the above
IES-26. Ans. (a)
F 9

e

| s ]

UITI-'-"‘

|

TCI
J

IES-27. At a point in two-dimensional stress system ox = 100 N/mm?2, oy = txy = 40 N/mm?2.

What is the radius of the Mohr circle for stress drawn with a scale of: 1 cm = 10

N/mm?2? Page 94 of 429 [TES-2005]
(a) 3cm (b) 4 cm (¢) 5cm (d) 6 cm
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IES-27. Ans. (c) Radius of the Mohr circle

2 2
_ \/["ngyj +1,7 /10 :N(Mj +402]/10:50/1O:50m

IES-28. Consider a two dimensional state of stress given for an element as shown in the
diagram given below: [TES-2004]
v 100 MPa
'S
200 MPa
200 MPa
—> X T1 00 MPa

What are the coordinates of the centre of Mohr's circle?
(a) (0, 0) (b) (100, 200) (c) (200, 100) (d) (50, 0)

+ —
IES-28. Ans. (d) Centre of Mohr’s circle is (G* . % ,o] - (200 > 100 ,oj - (50,0)

IES-29. Two-dimensional state of stress at a point in a plane stressed element is
represented by a Mohr circle of zero radius. Then both principal stresses
(a) Are equal to zero [TES-2003]
(b)  Are equal to zero and shear stress is also equal to zero
(¢)  Are of equal magnitude but of opposite sign

(d)  Are of equal magnitude and of same sign
IES-29. Ans. (d)

IES-30. Assertion (A): Mohr's circle of stress can be related to Mohr's circle of strain by
some constant of proportionality. [IES-2002]
Reason (R): The relationship is a function of yield stress of the material.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
(¢) Aistrue but R is false
(d) Ais false but R is true

IES-30. Ans. (c¢)

IES-31. When two mutually perpendicular principal stresses are unequal but like, the
maximum shear stress is represented by [IES-1994]
(a) The diameter of the Mohr's circle
(b) Half the diameter of the Mohr's circle
(¢)  One-third the diameter of the Mohr's circle
(d)  One-fourth the diameter of the Mohr's circle

IES-31. Ans. (b)

IES-32. State of stress in a plane element is shown in figure I. Which one of the
following figures-II is the correct sketch of Mohr's circle of the state of stress?
[TES-1993, 1996]

—_

S |

|-~

Ay 1N
] :
_ @ (&) \J/ [\aj
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IES-32. Ans. (¢)

Strain

IES-33. A point in a two dimensional state of strain is subjected to pure shearing strain
of magnitude y, radians. Which one of the following is the maximum principal

strain? [TES-2008]
@) 7, ®) 7,2 © 7,12 @27,
IES-33. Ans. (¢)

IES-34. Assertion (A): A plane state of stress does not necessarily result into a plane
state of strain as well. [IES-1996]
Reason (R): Normal stresses acting along X and Y directions will also result
into normal strain along the Z-direction.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
(¢) Aistrue but R is false
(d) Aisfalse but R is true

IES-34. Ans. (a)

Principal strains
IES-35. Principal strains at a point are 100x107° and -200x10°°. What is the maximum

shear strain at the point? [TES-2006]
() 300 x 10-6 (b) 200 x 10-6 (c) 150 x 10-6 (d) 100 x 10-6
IES-35. Ans. (a) 7. =& —& =100-(-200)x10° =300x10°
don't confuse withMaximumShear stress(z,,,, ) = %
in strain 22 = £ 7% ang T = % that is the difference.
IES-36. The principal strains at a point in a body, under biaxial state of stress, are
1000%10-6 and —600 x 10-6, What is the maximum shear strain at that point?
[TES-2009]
(a) 200 x 10-6 (b) 800 X 10-6 (¢) 1000 x 10-6 (d) 1600 x 10-6

IES-36. Ans. (d)

=1000x10°° —(—600x10’6) =1600x10°°

= 5 = d)xy =€, —€§,

IES-37. The number of strain readings (using strain gauges) needed on a plane surface
to determine the principal strains and their directions is: [TES-1994]
(a) 1 (b) 2 ()3 (d) 4

IES-37. Ans. (¢) Three strain gauges are needed on a plane surface to determine the principal
strains and their directions.

Principal strain induced by principal stress

IES-38. The principal stresses at a point in two dimensional stress system are o1 and
o2 and corresponding principal strains are & and ¢,. If E and v denote
Young's modulus and Poisson's ratio, respectively, then which one of the
following is correct? [TES-2008]

E
(a) o, =Eg¢, (b)o, = m[a +ve, |

(c)o, = %[51 - ng] Pag@gmfﬁg[ﬁ - V‘gz]
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IES-38. Ans. (b) ¢, = S u& and ¢, = % _ ,uﬂ From these two equation eliminate o, .
E E E E
IES-39. Assertion (A): Mohr's construction is possible for stresses, strains and area
moment of inertia. [TES-2009]

Reason (R): Mohr's circle represents the transformation of second-order tensor.
(a) Both A and R are individually true and R is the correct explanation of A.
(b) Both A and R are individually true but R is NOT the correct explanation of A.
(¢) Ais true but R is false.
(d) Ais false but R is true.
IES-39. Ans. (a)

Previous 20-Years IAS Questions

Stresses due to Pure Shear

IAS-1. On a plane, resultant stress is inclined at an angle of 45° to the plane. If the
normal stress is 100 N /mm?2, the shear stress on the plane is: [IAS-2003]
(a) 71.5 N/mm? (b) 100 N/mm? (c) 86.6 N/mm? (d) 120.8 N/mm?2

IAS-1. Ans. (b) Weknowo, = ocos’6 and r=osindcosé
100 = o cos?’45 or o =200
7=200sin45c0s45 =100

IAS-2. Biaxial stress system is correctly shown in [TAS-1999]
304 410 404 404
—t .20 |30 20 20| .20 220
4 b
20 10 19 10 39 30 30 3;9
" L " "
200 2095 20— 20 20— —
30r 1r1 0 40‘" 40“
@ ®) © @

IAS-2. Ans. (c¢)

v

A
.

IAS-3. The complementary shear stresses of — e T A
intensity 7 are induced at a point in D
the material, as shown in the figure.

Which one of the following is the .rl T
correct set of orientations of principal T
planes with respect to AB?
(a) 30° and 120° (b) 45° and 135° C B
(c) 60° and 150° (d) 753563 6pi20 —r

[IAS-1998]
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IAS-3. Ans. (b) It is a case of pure shear so principal planes will be along the diagonal.
IAS-4. A uniform bar lying in the x-direction is subjected to pure bending. Which one
of the following tensors represents the strain variations when bending moment

is about the z-axis (p, q and r constants)? [TAS-2001]
py 0 O py 0 O
@0 g O ®| 0 gy O
0 0 nry 0 0 O
py 0 0 pyp 0 O
@0 py O @p 0 gy 0
0 0 py 0 0 g
TIAS-4. Ans. (d) Stress in x direction = ox
Therefore &, = % , &, =—U I R & =—u I
Y FE Y E : E
IAS-5. Assuming E = 160 GPa and G = 100 GPa for a material, a strain tensor is given
as: [TAS-2001]
0.002 0.004 0.006
0.004 0.003 0
0.006 0 0
The shear stress, 7 is:
(a) 400 MPa (b) 500 MPa (c) 800 MPa (d) 1000 MPa

IAS-5. Ans. (c¢)

8xx gxy gxz
Y

£, €,6,. | and & =

gZJC gZy EZZ

7, =G 7, =100x10" x(0.004x 2) MPa=800MPa

Principal Stress and Principal Plane

IAS-6. A material element subjected to a plane state of stress such that the maximum

shear stress is equal to the maximum tensile stress, would correspond to

[IAS-1998]
il 1 1
o] a] o] el a1 Tl .‘_G] _.,G]
(a) E]i GI G]T
(b) (c) (d)
IAS-6. Ans. (d) 7, - Z %2 =) _

2 2

IAS-7. A solid circular shaft is subjected to a maximum shearing stress of 140 MPs.

The magnitude of the maximum normal stress developed in the shaft is:
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(a) 140 MPa (b) 80 MPa (c) 70 MPa (d) 60 MPa
IAS-7. Ans. (a) 7., = 1 ;(72 Maximum normal stress will developed if o, =-0, =0
IAS-8. The state of stress at a point in a loaded member is shown in the figure. The

magnitude of maximum shear stress is [IMPa = 10 kg/cm?] [TAS 1994]

(a) 10 MPa (b) 30 MPa (c) 50 MPa (d) 100MPa

A
ag,= 40P
~ T =30MPa
k
o, = —A0MPa o, = 40MPa
\
L 3004Pa”
T, = 40P
v
o —o. Y 40-40Y’

IAS-8. Ans. (¢) 7,,, = (%) + Txyz = \/(T] +30° = 50 MPa
IAS-9. A horizontal beam under bending has a maximum bending stress of 100 MPa

and a maximum shear stress of 20 MPa. What is the maximum principal stress

in the beam? [TAS-2004]

(a) 20 (b) 50 (c) 50 + /2900 (d) 100

IAS-9. Ans. (¢) 0v=100MP. 7 =20 mP,

2
O O
01,2:—b+ (Tbj + Tz

2
2 2
m,z=%+,/(%j +72 =%+ /(%j +20° =(50++/2900 ) MPa

IAS-10. When the two principal stresses are equal and like: the resultant stress on any

plane is: [TAS-2002]
(a) Equal to the principal stress (b) Zero
(c) One half the principal stress (d) One third of the principal stress
o +0 o —0O0
IAS-10. Ans. (a) 0, =— 5 Ly —= 5 Y cos26

[We may consider thisas 7,, =0] o, =0,=0(say) So o, =0 foranyplane

IAS-11. Assertion (A): When an isotropic, linearly elastic material is loaded biaxially,
the directions of principal stressed are different from those of principal
strains. [TAS-2001]
Reason (R): For an isotropic, linearly elastic material the Hooke's law gives
only two independent material properties.

(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
(¢) Aistrue but R is false
(d) Ais false but R is true
IAS-11. Ans. (d) They are same.
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IAS-12. Principal stress at a point in a stressed solid are 400 MPa and 300 MPa
respectively. The normal stresses on planes inclined at 45° to the principal

planes will be: [TAS-2000]
(a) 200 MPa and 500 MPa (b) 350 MPa on both planes
(c) 100MPaand6ooMPa (d) 150 MPa and 550 MPa

TIAS-12. Ans. (b)

o +o, o -0 -
0',1:( x2 y]+( x2 yjcos2(9=400;300+40023oocos2x45":350MPa

IAS-13. The principal stresses at a point in an elastic material are 60N/mm?2 tensile, 20
N/mm? tensile and 50 N/mm?2 compressive. If the material properties are: p =
0.35 and E = 105 Nmm2, then the volumetric strain of the material is: [IAS-1997]
(a) 9 x 10-5 (b) 3 x 104 (c) 10.5 x 10-5 (d) 21 x 10-5
IAS-13. Ans. (a)

e =T &+2 e—&— 92, 9% | ande,=2z- &+&
<E HMETE)YTE YAETE = E M ETE

o, +
€, =€, +€ +ezzm—2—#(ax+a +o—z)
y E E y
+o,+ _
:(1—2ﬂ)[0* sz sz=(60+1202 50)(1—2x0.35):9x105

Mohr's circle
TAS-14. Match List-I (Mohr's Circles of stress) with List-II (Types of Loading) and select

the correct answer using the codes given below the lists: [TAS-2004]
List-I List-1I
(Mohr's Circles of Stress) (Types of Loading)

Ai
o VT\ 1. A shaft compressed all round by a hub
C

2. Bending moment applied at the free
B. Ol C end of a cantilever
C. .
3. Shaft under torsion
j |
i |
C O
4. Thin cylinder under pressure
i
D. O E:. 5. Thin spherical shell under internal
pressure
Codes: A B C D A B C D
(a 5 4 3 2 (b) 2 4 1 3
(c) 4 3 2 5 (d) 2 3 1 5

IAS-14. Ans. (d)
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IAS-15. The resultant stress on a certain plane makes an angle of 20° with the normal
to the plane. On the plane perpendicular to the above plane, the resultant
stress makes an angle of 0 with the normal. The value of 0 can be: [IAS-2001]
(a) 0° or 20° (b) Any value other than 0° or 90°
(c) Any value between 0° and 20° (d) 20° only

IAS-15. Ans. (b)

IAS-16. The correct Mohr's stress-circle drawn for a point in a solid shaft compressed
by a shrunk fit hub is as (O-Origin and C-Centre of circle; OA = o1 and OB = 032)

[IAS-2001]
O/ 1 O N\ 9y ©
) T

IAS-16. Ans. (d)

IAS-17. A Mohr's stress circle is drawn for a body subjected to tensile stress fx and fy

in two mutually perpendicular directions such that fx >fy. Which one of the
following statements in this regard is NOT correct? [TAS-2000]

s

(a) Normal stress on a plane at 45° to f is equal to

2
=1,

(b) Shear stress on a plane at 450 to fx is equal to

(c) Maximum normal stress is equal to fx .

S+t
2

(d) Maximum shear stress is equal to

IAS-17. Ans. (d) Maximum shear stress is

fi—1,
2

TAS-18. For the given stress condition o0 ,=2 N/mm? o, =0 andey =0, the correct
Mohr’s circle is: [IAS-1999]

@ ®) © @

+
IAS-18. Ans. (d) Centre Ox ZO-V,OJz(Z;O,Oj:(l 0)

2 0

radius = +0 =1

IAS-19. For which one of the following two-dimensional states of stress will the Mohr's
stress circle degenerate into a point? [TAS-1996]

Page 101 of 429



Chapter-2 Principal Stress and Strain

T t

N
e o M iﬁ%

@) (b)

IAS-19. Ans. (c) Mohr’s circle will be a point.

(c)

. . O'X — O,
Radius of the Mohr’s circle = [ 2 : J +7,, .~.1,=0ando, =0, =0
Principal strains
IAS-20. In an axi-symmetric plane strain problem, let u be the radial displacement at r.
Then the strain components¢,,&,, Yeg are given by [IAS-1995]
@ ¢ ug ou o%u b & Gug Uy o
a =—, =—, B = B =—, =—, , =
’ o’ orod o’
u ou ou ou o%u
(C) gr:_’gﬁz_’YrH:() (d) 8r:_’89:_’ o =
r or or 00 orof

IAS-20. Ans. (b)

IAS-21. Assertion (A): Uniaxial stress normally gives rise to triaxial strain.
Reason (R): Magnitude of strains in the perpendicular directions of applied
stress is smaller than that in the direction of applied stress. [IAS-2004]
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
(¢) Aistrue but R is false
(d) Ais false but R is true

IAS-21. Ans. (b)

IAS-22. Assertion (A): A plane state of stress will, in general, not result in a plane state
of strain. [TAS-2002]
Reason (R): A thin plane lamina stretched in its own plane will result in a state
of plane strain.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
(¢) Aistrue but R is false
(d) Ais false but R is true

IAS-22. Ans. (¢) R is false. Stress in one plane always induce a lateral strain with its orthogonal
plane.
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Previous Conventional Questions with Answers

Conventional Question IES-1999
Question: What are principal in planes?
Answer: The planes which pass through the point in such a manner that the resultant stress

across them is totally a normal stress are known as principal planes. No shear stress
exists at the principal planes.

Conventional Question IES-2009

Q. The Mohr’s circle for a plane stress is a circle of radius R with its origin at + 2R

on ¢ axis. Sketch the Mohr’s circle and determinec .., G,ins Cav (Txy) for

max

this situation. [2 Marks]
Ans. Here 6,,,« = 3R

Omin = R

3R+R
G,y = =2R
oV 2
c — Oy 3R-R
and Txy — —max min _ -R
2 2
N

7
@
Conventional Question IES-1999

Question: Direct tensile stresses of 120 MPa and 70 MPa act on a body on mutually
perpendicular planes. What is the magnitude of shearing stress that can be
applied so that the major principal stress at the point does not exceed 135

MPa? Determine the value of minor principal stress and the maximum shear
stress.

Answer: Let shearing stress is '7' MPa.

pd
~

A\ 4

70Mpa
The principal stresses are 3

J
120 470 120—70Y
Oy, = i\/[ ] +7 120Mpa

2 2 120Mpa
Major principal stress is J J
. 120+70  [(120—-70)
oy = 5 + \/[ 5 ] +7
=135(Given) or,™ = 31.2MPa. 70Mpa

(o]

Page 103 of 429



Chapter-2 Principal Stress and Strain

Minor principal stress is

2
o, = 120; 0 —\/(1202_ 70) +31.2* =55MPa

_ 0, -0, _ 135-55 _ 40MPa
2 2

Conventional Question IES-2009

Q. The state of stress at a point in a loaded machine member is given by the
principle stresses. [ 2 Marks]

(i) What is the magnitude of the maximum shear stress?
(ii) What is the inclination of the plane on which the maximum shear stress
acts with respect to the plane on which the maximum principle stress
G, acts?
Ans. (i) Maximum shear stress,
o, -G53 _600—(-600)
2 2
=600 MPa

(ii) At 0 =45° max. shear stress occurs with O ,plane. Since 0, and O, are principle

T=

. . o . . .
stress does not contains shear stress. Hence max. shear stress is at 45° with principle
plane.

Conventional Question IES-2008
Question: A prismatic bar in compression has a cross- sectional area A = 900 mm?2 and

carries an axial load P = 90 kN. What are the stresses acts on

(i) A plane transverse to the loading axis;

(ii) A plane at 0= 60°to the loading axis?
Answer: (1) From figure it is clear A plane

transverse to loading axis, 0=0c

Lo, = Ecos2 9=—90000 N/ mm?

A 900
=100N / mm?

and T=iSin26= 90000 x sin6=0
2A 00

(i11) A plane at 60° to loading axis,
0 =60°-30° =30°
P

— ZCOSZ 9=20000 1230
= 75N | mm? i .
7= P sinog = 20090 5 60° p -
2A 2x900
=43.3N [/ mm®

Conventional Question IES-2001
Question: A tension member with a cross-sectional area of 30 mm? resists a load of 80

kN, Calculate the normal and shear stresses on the plane of maximum shear
stress.
n

Answer: o, = ECOSZ 0 T= i sin20
A 2A
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/-crn

P «—

For maximum shear stress sin20 =1, or, 0 = 45°

3 3
(6,,) = M x cos® 45 =1333MPa and Troax = i = M —1333MPa
30 2A 30x2

Conventional Question IES-2007
Question: At a point in a loaded structure, a pure shear stress state 7 = 3400 MPa
prevails on two given planes at right angles.
(i) What would be the state of stress across the planes of an element taken at
+45° to the given planes?
(ii) What are the magnitudes of these stresses?

Answer: (1) For pure shear
G, =—0,; =+06 = +400MPa

\

N i
"

O 4] k) O
r\ ¥ 2
— -\"‘=0 Mohr's Clrcle In pure shear
q =0 s, G,

(1)) Magnitude of these stresses
c,=r1,Sin20 =7, Sin90° =7, =400MPa and 7= (-7, c0s20)=0

Conventional Question IAS-1997

Question: Draw Mohr's circle for a 2-dimensional stress field subjected to
(a) Pure shear (b) Pure biaxial tension (c) Pure uniaxial tension and (d) Pure
uniaxial compression

Answer: Mohr's circles for 2-dimensional stress field subjected to pure shear, pure biaxial
tension, pure uniaxial compression and pure uniaxial tension are shown in figure
below:

1 T 1 T4 bt

I
() — N

o a, 0 g °
N o
a, 92
PN ) > -
! © (d)

{a) (b)

Conventional Question IES-2003
Question: A Solid phosphor bronze shgg%ﬁgsr&q&én diameter is rotating at 800 rpm and
transmitting power. It is subjected torsion only. An electrical resistance
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strain gauge mounted on the surface of the shaft with its axis at 45° to the
shaft axis, gives the strain reading as 3.98 x 10-4. If the modulus of elasticity
for bronze is 105 GN/m2 and Poisson's ratio is 0.3, find the power being
transmitted by the shaft. Bending effect may be neglected.

Answer:

|
1

L Zﬁ.xis of the Shaft

Let us assume maximum shear stress on the cross-sectional plane MU is 7. Then

Principal stress along, VM = -% 47% = -7 (compressive)

Principal stress along, LU = %\/472 = 7(tensile)
Thus magntude of the compressive strain along VM is
=é(1 +u)=3.98%x10"*

3.98><10’4><(105><109)

=32.15MPa
(1+0.3)

orr=

.. Torque being transmitted (T) = 7 x%x d’

=(32.15x10°) x%x0.063=1363.5 Nm

2nN

.".Power being transmitted, P =T'W=T'[E] =1363.5%

[M]W:114.z3kw

Conventional Question IES-2002

Question: The magnitude of normal stress on two mutually perpendicular planes, at a
point in an elastic body are 60 MPa (compressive) and 80 MPa (tensile)
respectively. Find the magnitudes of shearing stresses on these planes if the
magnitude of one of the principal stresses is 100 MPa (tensile). Find also the
magnitude of the other principal stress at this point.
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Answer:

Above figure shows stress condition assuming N
shear stressis' 7 '

80Mpa
JXY
Principal stresses
2
G, +o, G,—0O,
G, = y oy \/[ ] + 7_ eorx/lpaLI 2 60Mpa
ny
—60 + 80 —60—
or,c,, = + \/ + Tfy
J
80Mpa
—60-+80 —60—
or,c,, = + + \/ + T

To make pr1nc1pal stress 100 MPa we have to consider '+

6, =100MPa =10+,/70’ + 72 ; or, 7, = 56.57MPa
Therefore other principal stress will be

2
5 _ —60+80 [[—60-80 . (56.57)
? 2 2

i.e. 80 MPa(compressive)

Conventional Question IES-2001

Question: A steel tube of inner diameter 100 mm and wall thickness 5 mm is subjected to a
torsional moment of 1000 Nm. Calculate the principal stresses and
orientations of the principal planes on the outer surface of the tube

Polar moment of Inertia (J)=%[(o.1 10)* —(0.100)°

Answer:

=4.56x10"°m*

5mm
Now }:lor ,_ T.R _1000x(0.055)

J 4.56x10°°
= 12.07MPa

27,
Now,tan26, = Y

o, —0,

H 0 0
gives 6, =45 or 135

:O(,

o, = 7,,Sin20 = 12.07 x 5in90°
—12.07 MPa
and o, =12.07sin270°
= —12.07MPa

Conventional Question IES-2000

Question: At a point in a two dimensional stress system the normal stresses on two

mutually perpendicular planes are o _ and o, and the shear stress is 7 xy. At

what value of shear stress, one of the principal stresses will become zero?
Answer: Two principal stressdes are

o, +0 G -0
Gl’z— 2 :l:\/[ x2 Y

2
+Ty
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Considering (-)ive sign it may be zero

2 2 2

6, +0 c.—0O c.+o0 G.—O
X y _ X y 2 X y o x y 2
= +7,, or, = +7,

2 2 2 2

6. _+o0 ? c c ?

2 x y x Oy 2 __ —

or,7,, = 5 ] — 2 ] or,7, =060, OI,7, =%£,00,

Conventional Question IES-1996

Question:

Answer:

A solid shaft of diameter 30 mm is fixed at one end. It is subject to a tensile
force of 10 kN and a torque of 60 Nm. At a point on the surface of the shaft,
determine the principle stresses and the maximum shear stress.

Given: D =30 mm = 0.03 m; P =10 kN; T= 60 Nm

Principal stresses(o;,0,) and maximum shear stress(z,,, ):

: 10x10° 6 2 2
Tensile stress o, =0, =—— =14.15x10°N/m* or 14.15 MN/m
4 2
—x0.03
4
T
a, a,
T
, T T
As per torsion equation,—=—
J R
.. Shear stress, T=B= TR _ 60x0.015 =11.32x10°N/m?
b Zpt 2 (0.03)

32 32
or 11.32 MN/ m?

The principal stresses are calculated by using the relations:

2
o, +0 o, —O. )
0'1,2=( 5 y]i [[ 5 y]:l_‘_z-xy

Here O'X=14.15MN/m2,O'y=0;Txy=f=11.32 MN / m?

2
0'1,2:14'215i\/[14'215j . (11.32)

=7.07 £13.35=20.425 MN/m?,-6.275MN / m?.
Hence,major principal stress, o, =20.425 MN/m?(tensile)
Minor principal stress, o, =6.275MN/m? (compressive)
o, 0, 24.425-(-6275)

Maximum shear stress,z,, = 5 > =13.35mm /m?

Conventional Question IES-2000

Question:

Two planes AB and BC which are at right angles are acted upon by tensile
stress of 140 N/mm?2 and a compressive stress of 70 N/mm? respectively and
also by stress 35 N/mm2. Determine the principal stresses and principal
planes. Find also the maximum shear stress and planes on which they act.

Sketch the Mohr circle and mark the relevant data.
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Principal Stress and Strain

Given 70N/mnt
o,=140MPa (tensile) c ; B
0,=-70MPa(compressive)

35Nmm?
Ty = 35MPa 140N/mnt
Principal stresses; c,,0,;

A

We know that, ¢, , = \/[ ]

140 70 \/[140+7o]

+35° =35+110.7

Therefore 6,=145.7 MPa and ¢, = —75.7MPa

Position of Principal planes 6,,6,

2
c,—o, 140+70
Maximum shear stress, 7, =% 262 = 145 ;75'7 =110.7MPa
Mobhr cirle: Y

OL=c, =140MPa

OM =c, = —-70MPa

SM=LT =7, =35MPa u
Joining ST that cuts at 'N'

SN=NT=radius of Mohr circle =110.7 MPa

OV=c, =145.7MPa

OV =0, =—-75.7MPa

Conventional Question IES-2010

Q6.

Ans.

The data obtained from a rectangular strain gauge rosette attached to a
stressed steel member are € =—220X10_6, 6252 120><100_6, and

€q9 =220x107°. Given that the value of E = 2x10° N/ mm? and Poisson’s

Ratiop=0.3, calculate the values of principal stresses acting at the point and

their directions. [10 Marks]
A rectangular strain gauge rosette strain

=-220x10° € ,=120x10" €4=220x10"°

E =2x10"'N/m? poisson ratio u=0.3
Find out principal stress and their direction.
Let e, =€, e,=€, and e, =€,

We know that principal strain are

€,= Ca ;eb \/(ea —e, )2 + (e, — e, )2
(—220 x107¢ + 120 x 10-‘*)
2

. i\/((_220_120)+10—6)2+((120—220)10_6)2

= -50x107°+ —354 40x10°°
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Chapter-2 Principal Stress and Strain
€,,=>-50x107° £250.6x107°

€,=2.01x10™*
€,=-3.01x10™"
Direction can be find out : -
—-e, — -6
tan20, — 26 =Cuec  2x120x107
’ €.~ €, 220x107° +220x10"
= & =0.55
440
20, = 28.81

0, = 14.45° clockwise form principal strain t,

Principal stress:-

E(e, +ne,) 2x10"(2+0.3(-3)x10™)
1-p® 1-0.3%

=241.78x10° N/ m*

=-527.47x10° N/ m?

1

Conventional Question IES-1998
Question: When using strain-gauge system for stress/force/displacement measurements
how are in-built magnification and temperature compensation achieved?
Answer: In-built magnification and temperature compensation are achieved by
(a) Through use of adjacent arm balancing of Wheat-stone bridge.
(b) By means of self temperature compensation by selected melt-gauge and dual
element-gauge.

Conventional Question AMIE-1998

Question: A cylinder (500 mm internal diameter and 20 mm wall thickness) with closed
ends is subjected simultaneously to an internal pressure of 0-60 MPa, bending
moment 64000 Nm and torque 16000 Nm. Determine the maximum tensile
stress and shearing stress in the wall.

Answer: Given: d =500 mm =05 m; t =20 mm =002 m; p =060 MPa = 0.6 MN/m?2;
M = 64000 Nm = 0064 MNm; T= 16000 Nm = 0016 MNm.
Maximum tensile stress:
First let us determine the principle stresseso, and o, assuming this as a thin

cylinder.

We know, o, =p—d=M=7.5l\/|N/m2
2t 2x0.02

and _Pd_08x05_475uN/m?

G frd —_—

2 4t 4x0.02
Next consider effect of combined bending moment and torque on the walls of the
cylinder. Then the principal stresses o', and o', are given by
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Chapter-2 Principal Stress and Strain

' =1—§3[M+\/M2 +T2}
T
and o' = [M N V2N TZJ

727 7d®
' 16 2 2 2
o' =— | 0.064+/0.0647 +0.0167 | =5.29MN/m
7z><(0.5)
and o', = #[0.064 ~/0.0647 +0.0167 | ~-0.08MN / m’
7z><(0.5)
Maximum shearing stress, 7, :
We Know, 7. :%
o, =0,+0',=3.75-0.08 =3.67MN/m?(tensile)
T _12.79-367 _ 4 seMN/m?

Page 111 of 429



3.l Moment of Inertia and Centroid

Theory at a Glance (for IES, GATE, PSU)
3.1 Centre of gravity

The centre of gravity of a body defined as the point through which the whole weight of a body may be

assumed to act.

3.2 Centroid or Centre of area

The centroid or centre of area is defined as the point where the whole area of the figure is assumed

to be concentrated.

3.3 Moment of Inertia (MOI)

e About any point the product of the force and the perpendicular distance between them is
known as moment of a force or first moment of force.

e This first moment is again multiplied by the perpendicular distance between them to obtain
second moment of force.

e In the same way if we consider the area of the figure it is called second moment of area or
area moment of inertia and if we consider the mass of a body it is called second moment of
mass or mass moment of Inertia.

e Mass moment of inertia is the measure of resistance of the body to rotation and forms the
basis of dynamics of rigid bodies.

e Area moment of Inertia is the measure of resistance to bending and forms the basis of

strength of materials.

3.4 Mass moment of Inertia (MOI)

. 2
I=2mr
l

¢ Notice that the moment of inertia ‘T’ depends on the distribution of mass in the system.

e The furthest the mass is from the rotation axis, the bigger the moment of inertia.

e For a given object, the moment of inertia depends on where we choose the rotation axis.

e In rotational dynamics, the moment of inertia ‘I’ appears in the same way that mass m does

Page 112 of 429
in linear dynamics.



Chapter-3 Moment of Inertia and Centroid
e Solid disc or cylinder of mass M and radius R, about perpendicular axis through its

centre, I = %MR2

e Solid sphere of mass M and radius R, about an axis through its centre, I = 2/5 M R2

e Thin rod of mass M and length L, about a perpendicular axis through
its centre.
1 L
I=—Mr
12
‘+——>
L

¢ Thin rod of mass M and length L, about a perpendicular axis through its

end.

I:EML2
3

3.5 Area Moment of Inertia (MOI) or Second moment of area

e To find the centroid of an area by the first moment of the area  ” T
about an axis was determined ([ x dA) : // R\
e Integral of the second moment of area is called moment of I | """ ] e '

e (Consider the area (A)

| \1
inertia (| x2dA) : \\ /

e By definition, the moment of inertia of the differential area o o
about the x and y axes are dlx and dlyy

o dl.=y2dA L.=]y2dA

e dly=x2dA Ly =] x2dA

3.6 Parallel axis theorem for an area

Total Area = A

The rotational inertia about any axis is the sum of
second moment of inertia about a parallel axis

through the C.G and total area of the body times

square of the distance between the axes. X —
INnn =1Icc + Ah? T
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Chapter-3 Moment of Inertia and Centroid
3.7 Perpendicular axis theorem for an area

If x, v & z are mutually perpendicular axes as shown, then e
1,(J)=1,+1I, |

Z-axis is perpendicular to the plane of x — y and vertical to this page as

shown in figure. G .

® To find the moment of inertia of the differential area about the pole (point of origin) or z-axis,
(r) is used. (r) is the perpendicular distance from the pole to dA for the entire area
J=[r2dA = | (x?+y?)dA =L« + Iy (since r? = x2 + y?)

Where, J = polar moment of inertia

3.8 Moments of Inertia (area) of some common area
(i) MOI of Rectangular area Y

Moment of inertia about axis XX which passes

through centroid. ry

Take an element of width ‘dy’ at a distance y

from XX axis.
.". Area of the element (dA) = bX dy.
and Moment of Inertia of the element about XX CG.

axis=dA x y? =b.y>dy ,

..Total MOI about XX axis (Note it is area

moment of Inertia)
s "
I, = I by’dy =2 jbyzdy =
-y 0

bh’ Y
12 '

3
= o
12

Similarly, we may find, I, = h—b3
. M T
3 3
.".Polar moment of inertia (J) = Ixx+ Iyy = ﬂ+ ho
12 12
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Chapter-3 Moment of Inertia and Centroid

If we want to know the MOI about an axis NN passing

through the bottom edge or top edge.
Axis XX and NN are parallel and at a distance h/2.
Therefore Inn = Lx + Area X (distance) 2

3 2 3
O x| ) BB
12 2 3

Case-I: Square area

Case-II: Square area with diagonal as axis

a4

Ixx =~ T a
12

Case-III: Rectangular area with a centrally

rectangular hole

Moment of inertia of the area = moment of inertia of BIG

rectangle — moment of inertia of SMALL rectangle
I BH® bh’®
* 12 12
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Chapter-3

Moment of Inertia and Centroid

(ii) MOI of a Circular area Y
The moment of inertia about axis XX this passes through '
the centroid. It is very easy to find polar moment of inertia dr
about point ‘O’. Take an element of width ‘dr’ at a distance /- ! w D
Y from centre. Therefore, the moment of inertia of this &y
element about polar axis /
i
d@) =d(,, +1 )= area of ring x (radius)®
or d(J) =2zrdrxr’ Y
Integrating both side we get
R 4 4
J = _[27rr3dr _zR _zD
; 2 32
Due to summetry I =1 W
4
Therefore, I, = 1, = L =70
= > 2 64
4 4
zD D
I =1 = — andJ = —
XX yy 3 2
Case-I: Moment of inertia of a circular l\r.r
area with a concentric hole. //— | [
Moment of inertia of the area = moment of inertia of
BIG circle — moment of inertia of SMALL circle.
| | zD*  xd* d X— - o) X 2
== e er |
_ T (pt_ gt i
“eaP D) N / 1
V4
andJ = —(D*-d*
32( ) Y
Case-II: Moment of inertia of a semi-
circular area.
Iy = é of the momemt of total circular lamina N
N ..... —
_ 1 zD"'\ D'
2 64 128
We know that distance of CG from base is Y

4r 2D
—=—-=h
3t 3w (Say)

i.e. distance of parallel axis XX and NN is (h)

.. According to parallel axis theory
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Chapter-3 Moment of Inertia and Centroid
Iy =1 + Area x (distance)’

4 2
or 7D I +l(%]x(h)2

128 =79
D’ 1 [;zpzj (21)]
or —=1_ +—x x| 2=
128 2 4 37
_ 4
I_=0.11R

Case - III: Quarter circle area

or

Ixx = one half of the moment of Inertia of the Semi-

circular area about XX.

I = %x(O.llR“) =0.055 R*

I, =0.055R*

Inn = one half of the moment of Inertia of the Semi-

circular area about NN.
7 _lx zD' 7D’
M 97 g4 128

(iii) Moment of Inertia of a Triangular area
(a) Moment of Inertia of a Triangular area of

a axis XX parallel to base and passes through
C.G.

bh®
I —
X 36

(b) Moment of inertia of a triangle about an

axis passes through base

bh’
I. . =
NN 12 N-- -
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Chapter-3 Moment of Inertia and Centroid

(iv) Moment of inertia of a thin circular ring: Y
Polar moment of Inertia '
(J) =R? xarea of whole ring
=R?*x27Rt=27R%t
X ——X
'y

(v) Moment of inertia of a elliptical area

130 mm
- —Neutral Axis

3.9 Radius of gyration
Consider area A with moment of inertia I... Imagine

that the area is concentrated in a thin strip parallel to
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Chapter-3 Moment of Inertia and Centroid

the x axis with equivalent L. A y
I =Fk.A or -
kxx =radius of gyration with respect to the x axis. i.‘.n.
x 0] x
Similarly iy

Iyy = kfyA or

R =k AR
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Chapter-3 Moment of Inertia and Centroid

OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 20-Years GATE Questions

Moment of Inertia (Second moment of an area)

GATE-1. The second moment of a circular area about the diameter is given by (D is the

diameter) [GATE-2003]
zD* zD* zD* zD*
d
(a) . )] T (c) 5 (d) o1

GATE-1. Ans. (d)

GATE-2. The area moment of inertia of a square of size 1 unit about its diagonal is:
[GATE-2001]

1 1 1 1
(@) 3 ®) 7 © =5 (d) s

a (1)
GATE-2. Ans. (¢) I, ===

Radius of Gyration

Data for Q3-Q4 are given below. Solve the problems and choose correct

answers.

A reel of mass “m” and radius of gyration “k” is rolling down smoothly from rest with one
end of the thread wound on it held in the ceiling as depicted in the figure. Consider the
thickness of the thread and its mass negligible in comparison with the radius “r” of the
hub and the reel mass “m”. Symbol “g” represents the acceleration due to gravity.

[GATE-2003]
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Chapter-3 Moment of Inertia and Centroid

thread

r (hub radius)

GATE-3. The linear acceleration of the reel is:

2 2 2
gr gk grk mgr
@ (b) —— © 55 D =
(r2+k2) (r2+k2) (r2+k2) (r2+k2)
GATE-3. Ans. (a) For downward linear motion mg — T = mf, where f = linear tangential
acceleration = ra, a = rotational acceleration. Considering rotational motion
Tr = Ia.
2
or, T = mk? xé therefore mg — T = mf gives f = _8r
r (r2 + kK’ )
thread
reel
T —
1 (hub radius)
mg
GATE-4. The tension in the thread is:
mgr® mgrk mgk® mg
@ ——— b) ———— ©) ——— d) —=—
(r2+k2) (r2+k2) (r2+k2) (r2+k2)
2 2
GATE-4. Ans. (¢) T =mk* x L= mi? x— 8 ____msk
r

rz(r2 +k2) (r2 +k2)

Previous 20-Years IES Questions

Centroid
IES-1. Assertion (A): Inertia force always acts through the centroid of the body and is
directed opposite to the acceleration of the centroid. [TES-2001]

Reason (R): It has always a tendency to retard the motion.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
(¢) Aistrue but R is false
(d) Ais false but R is true
IES-1. Ans. (¢) It has always a tendency to oppose the motion not retard. If we want to retard a
motion then it will wand to accelerate.
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Radius of Gyration

IES-2. Figure shows a rigid body of mass
m having radius of gyration k

about its centre of gravity. It is to E

be replaced by an equivalent

dynamical system of two masses

placed at A and B. The mass at A

should be:

() XM (b) 2
a+b a+b A @ @ Ii-

© Zx2 @ 2 e— a—>——— b——H""
3 b 2 a " l »

[TES-2003]
IES-2. Ans. (b)

IES-3. Force required to accelerate a cylindrical body which rolls without slipping on a
horizontal plane (mass of cylindrical body is m, radius of the cylindrical
surface in contact with plane is r, radius of gyration of body is k and
acceleration of the body is a) is: [TES-2001]

@ m(k* /7" +1).a () (mk*/1*).a (c) mk*.a @ (mk*/7+1).a
IES-3. Ans. (a)

IES-4. A body of mass m and radius of gyration k is to be replaced by two masses m: and
m: located at distances h: and h: from the CG of the original body. An
equivalent dynamic system will result, if [IES-2001]

@h +h =k ) b +h =k’ © hh, =k’ @) h, =k’
IES-4. Ans. (c¢)

Previous 20-Years IAS Questions

Radius of Gyration

IAS-1. A wheel of centroidal radius of gyration 'k' is rolling on a horizontal surface
with constant velocity. It comes across an obstruction of height 'h' Because of
its rolling speed, it just overcomes the obstruction. To determine v, one should

use the principle (s) of conservation of [TIAS 1994]
(a) Energy (b) Linear momentum
(c) Energy and linear momentum (d) Energy and angular momentum
IAS-1. Ans. (a)
v
h
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Chapter-3 Moment of Inertia and Centroid

Previous Conventional Questions with Answers

Conventional Question IES-2004

Question: When are I-sections preferred in engineering applications? Elaborate your
answer.

Answer: I-section has large section modulus. It will reduce the stresses induced in the material.
Since I-section has the considerable area are far away from the natural so its section
modulus increased.
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