

## SANJAY BHOKARE GROUP OF INSTITUTES, MIRAJ.



Faculty of Engineering
An Autonomous Institute

Affiliated to Dr. Babasaheb Ambedkar Technological University, Lonere, Approved By AICTE New Delhi, Recognized by Government of Maharashtra and DTE Mumbai.

# Shri Ambabai Talim Sanstha's Sanjay Bhokare Group of Institutes, Miraj (An Autonomous Institute)

First Year Engineering Department

## Structure, Teaching and Evaluation Scheme For

First Year B. Tech.

(Common for All Branches)

To be Effective from

Academic Year 2024 – 25





An Autonomous Institute

Affiliated to Dr. Babasaheb Ambedkar Technological University, Lonere, Approved By AICTE New Delhi, Recognized by Government of Maharashtra and DTE Mumbai.

## **Semester:** I (Group A – Chemistry)

|    | Course   | Course            | C T'u                                                        | Teaching<br>Scheme |   | _  |         | Evalua   | ation Sc    | heme |       | Credit |
|----|----------|-------------------|--------------------------------------------------------------|--------------------|---|----|---------|----------|-------------|------|-------|--------|
| No | Category | Code              | Course Title                                                 | L                  | Т | P  | CA<br>I | CA<br>II | Mid<br>sem. | ESE  | Total | Credit |
| 1  | BSC      | 24FY <b>101</b> T | Engineering<br>Chemistry                                     | 3                  | 0 | 0  | 15      | 15       | 20          | 50   | 100   | 3      |
| 2  | BSC      | 24FY <b>102</b> T | Engineering<br>Mathematics – I                               | 3                  | 1 | 0  | 15      | 15       | 20          | 50   | 100   | 4      |
| 3  | ESC      | 24FY <b>103</b> T | Engineering<br>Mechanics                                     | 3                  | 0 | 0  | 15      | 15       | 20          | 50   | 100   | 3      |
| 4  | PCC      | 24FY <b>104</b> T | Computer Programming using C language                        | 3                  | 0 | 0  | 15      | 15       | 20          | 50   | 100   | 3      |
| 5  | AEC      | 24FY <b>105</b> T | Communication<br>Skills                                      | 2                  | 0 | 0  | 15      | 15       | 20          | 50   | 100   | 2      |
| 6  | BSC      | 24FY <b>101</b> L | Engineering Chemistry <b>Lab</b>                             | 0                  | 0 | 2  | 15      | 15       | -           | 20** | 50    | 1      |
| 7  | ESC      | 24FY <b>103</b> L | Engineering Mechanics Lab                                    | 0                  | 0 | 2  | 15      | 15       | -           | 20*  | 50    | 1      |
| 8  | PCC      | 24FY <b>104</b> L | Computer Programming using C language Lab                    | 0                  | 0 | 2  | 30      | 30       | -           | 40** | 100   | 1      |
| 9  | AEC      | 24FY <b>105</b> L | Communication<br>Skills <b>Lab</b>                           | 0                  | 0 | 2  | 15      | 15       | -           | 20*  | 50    | 1      |
| 10 | VSEC     | 24FY <b>110</b> L | Workshop Practice-Basic Civil and Mechanical Engineering Lab | 0                  | 0 | 4  | 30      | 30       | -           | 40*  | 100   | 2      |
| 11 | CC       | 24FY <b>112</b> L | Yoga/Sports Lab                                              | 0                  | 0 | 2  | 15      | 15       | -           | 20*  | 50    | 1      |
|    |          | Total             |                                                              | 14                 | 1 | 14 | 195     | 195      | 100         | 410  | 900   | 22     |





An Autonomous Institute

Affiliated to Dr. Babasaheb Ambedkar Technological University, Lonere, Approved By AICTE New Delhi, Recognized by Government of Maharashtra and DTE Mumbai.

## **Semester:** I (Group B – Physics)

| Sr. | Course   | Course            | Course Title                                                       |    | eachii<br>chem | _  |         | Eva      | aluation    | Scheme |       | Credit |
|-----|----------|-------------------|--------------------------------------------------------------------|----|----------------|----|---------|----------|-------------|--------|-------|--------|
| No. | Category | Code              | Course Title                                                       | L  | Т              | P  | CA<br>I | CA<br>II | Mid<br>sem. | ESE    | Total | Credit |
| 1   | BSC      | 24FY <b>106</b> T | Engineering Physics                                                | 3  | 0              | 0  | 15      | 15       | 20          | 50     | 100   | 3      |
| 2   | BSC      | 24FY <b>102</b> T | Engineering Mathematics – I                                        | 3  | 1              | 0  | 15      | 15       | 20          | 50     | 100   | 4      |
| 3   | ESC      | 24FY <b>108</b> T | Engineering Graphics                                               | 3  | 0              | 0  | 15      | 15       | 20          | 50     | 100   | 3      |
| 4   | ESC      | 24FY <b>109</b> T | Basic<br>Electrical<br>Electronics<br>Engineering                  | 3  | 0              | 0  | 15      | 15       | 20          | 50     | 100   | 3      |
| 5   | ESC      | 24FY <b>110</b> T | Basic Civil<br>and<br>Mechanical<br>Engineering                    | 3  | 0              | 0  | 15      | 15       | 20          | 50     | 100   | 3      |
| 6   | IKS      | 24FY <b>111</b> T | Energy and<br>Environment                                          | 2  | 0              | 0  | 15      | 15       | 20          | 50     | 100   | 2      |
| 7   | BSC      | 24FY <b>106</b> L | Engineering Physics <b>Lab</b>                                     | 0  | 0              | 2  | 15      | 15       | 1           | 20**   | 50    | 1      |
| 8   | ESC      | 24FY <b>108</b> L | Engineering Graphics <b>Lab</b>                                    | 0  | 0              | 2  | 30      | 30       | -           | 40*    | 100   | 1      |
| 9   | VSEC     | 24FY <b>109</b> L | Workshop Practice-Basic Electrical and Electronics Engineering Lab | 0  | 0              | 2  | 30      | 30       | -           | 40*    | 100   | 1      |
| 10  | CC       | 24FY <b>113</b> L | Integrated Personality Development / NSS Lab                       | 0  | 0              | 2  | 15      | 15       | -           | 20*    | 50    | 1      |
|     |          | Total             |                                                                    | 17 | 1              | 08 | 180     | 180      | 120         | 420    | 900   | 22     |





An Autonomous Institute Affiliated to Dr. Babasaheb Ambedkar Technological University, Lonere, Approved By AICTE New Delhi, Recognized by Government of Maharashtra and DTE Mumbai.

## **Semester: I I** (Group A – Physics)

| Sr. | Course   | Course            | Course Title                                                   |    | eachii<br>chem | _  |         | Eva      | aluation    | Scheme | heme  |        |  |  |  |
|-----|----------|-------------------|----------------------------------------------------------------|----|----------------|----|---------|----------|-------------|--------|-------|--------|--|--|--|
| No. | Category | Code              | Course Title                                                   | L  | Т              | P  | CA<br>I | CA<br>II | Mid<br>sem. | ESE    | Total | Credit |  |  |  |
| 1   | BSC      | 24FY <b>106</b> T | Engineering Physics                                            | 3  | 0              | 0  | 15      | 15       | 20          | 50     | 100   | 3      |  |  |  |
| 2   | BSC      | 24FY <b>107</b> T | Engineering Mathematics – II                                   | 3  | 1              | 0  | 15      | 15       | 20          | 50     | 100   | 4      |  |  |  |
| 3   | ESC      | 24FY <b>108</b> T | Engineering Graphics                                           | 3  | 0              | 0  | 15      | 15       | 20          | 50     | 100   | 3      |  |  |  |
| 4   | ESC      | 24FY <b>109</b> T | Basic<br>Electrical and<br>Electronics<br>Engineering          | 3  | 0              | 0  | 15      | 15       | 20          | 50     | 100   | 3      |  |  |  |
| 5   | ESC      | 24FY <b>110</b> T | Basic Civil<br>and<br>Mechanical<br>Engineering                | 3  | 0              | 0  | 15      | 15       | 20          | 50     | 100   | 3      |  |  |  |
| 6   | IKS      | 24FY <b>111</b> T | Energy and<br>Environment                                      | 2  | 0              | 0  | 15      | 15       | 20          | 50     | 100   | 2      |  |  |  |
| 7   | BSC      | 24FY <b>106</b> L | Engineering Physics Lab                                        | 0  | 0              | 2  | 15      | 15       | 1           | 20**   | 50    | 1      |  |  |  |
| 8   | ESC      | 24FY <b>108</b> L | Engineering Graphics <b>Lab</b>                                | 0  | 0              | 2  | 30      | 30       | 1           | 40*    | 100   | 1      |  |  |  |
| 9   | VSEC     | 24FY <b>109</b> L | Workshop Practice-Basic Electrical Electronics Engineering Lab | 0  | 0              | 2  | 30      | 30       | -           | 40*    | 100   | 1      |  |  |  |
| 10  | CC       | 24FY <b>113</b> L | Integrated Personality Development / NSS Lab                   | 0  | 0              | 2  | 15      | 15       | -           | 20*    | 50    | 1      |  |  |  |
|     |          | Total             |                                                                | 17 | 1              | 08 | 180     | 180      | 120         | 420    | 900   | 22     |  |  |  |





An Autonomous Institute

Affiliated to Dr. Babasaheb Ambedkar Technological University, Lonere, Approved By AICTE New Delhi, Recognized by Government of Maharashtra and DTE Mumbai.

## **Semester:** I I (Group B – Chemistry)

| Sr. | Course       | Course            | C T'41                                                       | Teaching Scheme |   |    |         | Evalu    | ation Sc    | heme |       | Credit |
|-----|--------------|-------------------|--------------------------------------------------------------|-----------------|---|----|---------|----------|-------------|------|-------|--------|
| No. | Categor<br>y | Code              | Course Title                                                 | L               | Т | P  | CA<br>I | CA<br>II | Mid<br>sem. | ESE  | Total | Credit |
| 1   | BSC          | 24FY <b>101</b> T | Engineering<br>Chemistry                                     | 3               | 0 | 0  | 15      | 15       | 20          | 50   | 100   | 3      |
| 2   | BSC          | 24FY <b>107</b> T | Engineering Mathematics – II                                 | 3               | 1 | 0  | 15      | 15       | 20          | 50   | 100   | 4      |
| 3   | ESC          | 24FY <b>103</b> T | Engineering Mechanics                                        | 3               | 0 | 0  | 15      | 15       | 20          | 50   | 100   | 3      |
| 4   | PCC          | 24FY <b>104</b> T | Computer Programming using C language                        | 3               | 0 | 0  | 15      | 15       | 20          | 50   | 100   | 3      |
| 5   | AEC          | 24FY <b>105</b> T | Communication<br>Skills                                      | 2               | 0 | 0  | 15      | 15       | 20          | 50   | 100   | 2      |
| 6   | BSC          | 24FY <b>101</b> L | Engineering Chemistry Lab                                    | 0               | 0 | 2  | 15      | 15       | -           | 20** | 50    | 1      |
| 7   | ESC          | 24FY <b>103L</b>  | Engineering Mechanics Lab                                    | 0               | 0 | 2  | 15      | 15       | -           | 20*  | 50    | 1      |
| 8   | PCC          | 24FY <b>104</b> L | Computer Programming using C language Lab                    | 0               | 0 | 2  | 30      | 30       | -           | 40** | 100   | 1      |
| 9   | AEC          | 24FY <b>105</b> L | Communication<br>Skills <b>Lab</b>                           | 0               | 0 | 2  | 15      | 15       | -           | 20*  | 50    | 1      |
| 10  | VSEC         | 24FY <b>110</b> L | Workshop Practice-Basic Civil and Mechanical Engineering Lab | 0               | 0 | 4  | 30      | 30       | -           | 40*  | 100   | 2      |
| 11  | CC           | 24FY <b>112</b> L | Yoga/Sports<br>Lab                                           | 0               | 0 | 2  | 15      | 15       | -           | 20*  | 50    | 1      |
|     |              | Total             |                                                              | 14              | 1 | 14 | 195     | 195      | 100         | 410  | 900   | 22     |





An Autonomous Institute

Affiliated to Dr. Babasaheb Ambedkar Technological University, Lonere, Approved By AICTE New Delhi, Recognized by Government of Maharashtra and DTE Mumbai.

## **List of Abbreviations**

| Sr. | Abbreviation | Description                             | Code |
|-----|--------------|-----------------------------------------|------|
| No. |              |                                         |      |
| 1   | L            | Lecture                                 |      |
| 2   | Т            | Tutorial                                |      |
| 3   | P            | Practical                               |      |
| 4   | Cr           | Credits                                 |      |
| 5   | ESE          | End Semester Examination                |      |
| 6   | BSC          | Basic Science Course                    | BS   |
| 7   | ESC          | Engineering Science Course              | ES   |
| 8   | AEC          | Ability Enhancement Course              | AE   |
| 9   | VSEC         | Vocational and Skill Enhancement Course | VS   |
| 10  | PCC          | Programme Core Course                   | PC   |
| 11  | IKS          | Indian Knowledge System                 | IK   |
| 12  | CC           | Co-curricular Course                    | CC   |
| 13  | TA           | Teacher's Assessment                    |      |
| 14  | ** POE       | Practical Oral Examination              |      |
| 15  | * OE         | Oral Examination                        |      |



## SANJAY BHOKARE GROUP OF INSTITUTES, MIRAJ.



Faculty of Engineering

An Autonomous Institute

Affiliated to Dr. Babasaheb Ambedkar Technological University, Lonere, Approved By AICTE New Delhi, Recognized by Government of Maharashtra and DTE Mumbai.

## Shri Ambabai Talim Sanstha's Sanjay Bhokare Group of Institutes, Miraj

(An Autonomous Institute)

First Year Engineering Department

## **Syllabus**

For

First Year B. Tech.

(Common for All Branches)

To be Effective from

Academic Year 2024 – 25

Semester – I

## **Engineering Chemistry**

| 24FY101T | <b>Engineering Chemistry</b> | BSC | 3L-0T-0P | 3 Credits |
|----------|------------------------------|-----|----------|-----------|
|          |                              |     |          |           |

| Teaching Scheme      | Examination Scheme                   |
|----------------------|--------------------------------------|
| Lecture: 3 hrs/week  | CA – I: 15 Marks                     |
| Tutorial: 0 hrs/week | Mid-Semester Examination: - 20 Marks |
|                      | CA – II: 15 Marks                    |
|                      | End Semester Exam: 50 Marks          |

## **Course Objectives:**

- 1. To impart the knowledge of Chemistry in the area of Engineering and Technology.
- To capable the student to explain the importance of chemistry in various fields Of Engineering.
- 3. To identify the concept of Chemistry to lay the ground work for subsequent Studies.

## Course Outcomes: After the completion of the course the student should be able to:

| CO1 | Students should be able to understand and explain the basic concepts of Water Treatment and capable to explain softening processes and water characteristics. |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Students should be able to explain analysis, Calorific value of fuel and explain Lubricants, its properties and industrial importance.                        |
| CO3 | Calculate the quality parameters of advanced materials and efficiency of fuel from given data.                                                                |
| CO4 | Student should be able to understand and explain various instrumental methods Of Analysis.                                                                    |
| CO5 | Student should be able to understand and explain properties and uses of Engineering materials such as Cement, Rubber etc.                                     |

## **Course Contents:**

## Unit 1: Water Treatment 6

Introduction, Hard and Soft water, Disadvantages of hard water, Softening of water, Ion exchange process, Hot lime –soda process, Reverse Osmosis (RO), Hardness and Its determination by EDTA method, Treatment of water for domestic Purpose- aeration and disinfection

## **Unit 2: Fuels and Lubricants**

6

**Fuels:** Introduction, classification fuel, Calorific value of a fuel, Calorific value by-Bomb Calorimeter, Boy 's Calorimeter and its Numerical. Analysis of coal: Proximate and Ultimate analysis.

Lubricants-Introduction, classification of lubricant – Solid, Semi –solid and Liquid Lubricant,

Properties of lubricant: Physical and Chemical properties of lubricant –Viscosity surface tension, Flash point and Fire point.

## Unit 3: Nanomaterials and Its Characterization techniques

6

Introduction of Nanomaterials, Synthesis of Nanomaterials (top down and bottom-up approach), Characterization of Nanomaterials using X-Ray Diffraction spectroscopy (XRD), Scanning. Electron (SEM), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM)

## **Unit 4: Instrumental Methods of Analysis**

6

**UV-Visible spectroscopy**: Introduction, Laws of absorption: Lambert 's- Beer 's law, Instrumentation and working of double beam spectrophotometer. **Flame Photometry**: Introduction, Principle and working **Chromatography**: Introduction, Classification, Thin layer chromatography (TLC). **IR spectroscopy**: Introduction, Principle, Range of IR radiations.

## **Unit 5: Engineering Materials**

6

Cement: Introduction, Portland cement, Chemical Composition of Cement

**High Polymers**: Thermosetting resin, Constituent of Plastic, Synthesis of Urea formaldehyde and its Properties and Uses, Brief discussion on Natural Rubber, Synthesis of Styrene – Butadiene rubber and its properties and uses.

## **Text Books:**

- 1. Jain P.C & Jain Monica, Engineering Chemistry, Dhanpat Rai& Sons, Delhi, 1992
- 2. Bhal &Tuli, Text book of Physical Chemistry, S. Chand & Company, New Delhi.
- Shikha Agarwal, Engineering Chemistry- Fundamentals and applications, Cambridge Publishers 2015.
- 4. Gurudeep Chatwal and Sham Anand, Instrumental methods of Chemical Analysis, Himalaya Publishing House, New Delhi.
- 5. V. R. Gowarikar, Polymer Science, New Age International Publication

## **Reference Books:**

- 1. Barrow G.M., Physical Chemistry, McGraw-Hill Publication, New Delhi.
- 2. O. G. Palanna, Engineering Chemistry, Tata McGraw-Hill Publication, New Delhi
- 3. WILEY, Engineering Chemistry, Wiley India, New Delhi 2014.
- 4. S. S. Dara, Engineering Chemistry, McGraw Hill Publication, New Delhi.
- 5. Willard, Hobart H.; Merritt, Lynne L., Jr.; Dean, John A. Instrumental Methods Of Analysis, American Chemical Society

## **Engineering Chemistry Lab**

| 24F Y 101L   Engineering Chemistry Lab   BSC   UL - U1 - 2P   1 Credits | 24FY101L | Engineering Chemistry Lab | BSC | 0L - 0T - 2P | 1 Credits |
|-------------------------------------------------------------------------|----------|---------------------------|-----|--------------|-----------|
|-------------------------------------------------------------------------|----------|---------------------------|-----|--------------|-----------|

| Teaching Scheme       | <b>Examination Scheme</b>                    |
|-----------------------|----------------------------------------------|
| Practical: 2 hrs/week | CA – I: 15 Marks                             |
|                       | CA – II: 15 Marks                            |
|                       | Practical Examination / Oral (ESE): 20 Marks |

## **Course Objectives:**

- 1. To impart the knowledge of Chemistry in the area of Engineering and Technology.
- 2. To determine various types of water sample such as EDTA method precipitation method.
- 3. To determine acid based titration.

## Course Outcomes: At the end of the course, students will be able to

| CO1 | Determination of Hardness of water sample by EDTA method and determine chloride Content in water sample by precipitation titration. |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | To determine dissolved oxygen and percentage purity of bleaching powder.                                                            |
| CO3 | Acid based titration pH metric titration and conductometric titration.                                                              |
| CO4 | To determine acidity of water saponification value of oil sample.                                                                   |
| CO5 | Determination of acidity and alkalinity of water sample.                                                                            |

## **List of Experiments:** Minimum 8-10 experiments are to be performed based on contents from syllabus

- 1. Determination of Hardness of water sample by EDTA method.
- 2. Determination of Chloride content in water sample by precipitation titration Method.
- 3. Determination of Dissolve Oxygen in water by Iodometric method.
- 4. Determination of Percent purity of Bleaching Powder.
- 5. pH-metric Titration (Acid Base titration)
- 6. Conductometric Titration (Acid Base titration)
- 7. Surface tension
- 8. Viscosity
- 9. To determine Acidity of water sample.
- 10. To determine Calorific value of a fuel.
- 11. Determination of Acid value of an oil sample.
- 12. Determination of Saponification value of an oil sample.
- 13. To verify Beer's-Lambert's law.
- 14. To determine Alkalinity water sample.
- 15. To determine the maximum wavelength of absorption of a given solution by
- 16. Colorimeter.
- 17. Experiments on Chromatography.

## **Recommended Books:**

- 1. Systematic experiments in Chemistry, A. Sethi, New Age International Publication, New Delhi
- 2. Practical Inorganic Chemistry, A. I. Vogel, ELBS Pub.

## **Engineering Mathematics – I**

| 24FY102T   Engineering Mathematics – I   BSC   3L – 1T – 0P   4 Credit |
|------------------------------------------------------------------------|
|------------------------------------------------------------------------|

| Teaching Scheme      | Examination Scheme                   |  |
|----------------------|--------------------------------------|--|
| Lecture: 3 hrs/week  | CA – I: 15 Marks                     |  |
| Tutorial: 1 hrs/week | Mid-Semester Examination: - 20 Marks |  |
|                      | CA – II: 15 Marks                    |  |
|                      | End Semester Exam: 50 Marks          |  |

## **Course Objectives:**

- 1. To know the application of the matrix technique (Linear algebra) to find solutions of system of linear equations arising in many engineering problems.
- 2. To know the application of the matrix technique (Linear algebra) to find inverse, eigen values and eigen vector of the matrix.
- 3. To know and apply the concept partial derivatives and their applications to Maxima/ Minima, series expansion of multi valued functions.
- 4. To understand computation of Jacobian of functions of several variables and their applications to engineering problems.
- 5. To know and discuss the need and use of complex variables to find roots, to separate complex quantities, and to establish a relation between circular and hyperbolic functions.

## Course Outcomes: After the completion of the course the student should be able to:

| CO1 | Apply the matrix technique (Linear algebra) to find solutions of system of linear equations arising in many engineering problems. |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Apply the matrix technique to find Eigen values, Eigen vectors and inverse by Cayley Hamilton theorem.                            |
| CO3 | Demonstrate the concept partial derivatives and their applications to Maxima/ Minima, series expansion of multi valued functions. |
| CO4 | Compute Jacobian of functions of several variables and their applications to engineering problems                                 |
| CO5 | Use the knowledge of Complex number in engineering problems.                                                                      |

## **Course Contents**

## **Unit 1: Linear Algebra- Matrices**

9

Inverse of a matrix by Gauss-Jordan method; Rank of a matrix; echelon form of matrix, Normal form of a matrix; Consistency of non-homogeneous and homogeneous system of linear equations

Linear dependence and independence of vectors, Eigen values and Eigen vectors, Properties of eigen values and eigen vectors (without proofs); Cayley-Hamilton's theorem (without proof) and its applications.

## **Unit 3: Partial Differentiation**

9

Partial derivatives of first and higher orders; Homogeneous functions – Euler's Theorem for functions containing two and three variables (with proofs); Total derivatives; Change of variables.

## **Unit 4 Applications of Partial differentiation**

9

Jacobians-properties; Taylor's and Maclaurin's theorems (without proofs) for functions of two variables; Maxima and minima of functions of two variables; Lagrange's method of undetermined multipliers.

## **Unit 5: Complex Number**

9

Definition and geometrical representation; De-Moivre's theorem (without proof); Roots of complex numbers by using De-Moivre's theorem; Circular functions of complex variable – definition; Hyperbolic functions; Relations between circular and hyperbolic functions; Real and imaginary parts of circular and hyperbolic functions; Logarithm of Complex quantities.

## **Text Books**

- 1. Higher Engineering Mathematics by B. S. Grewal, Khanna Publishers, New Delhi.
- 2. Advanced Engineering Mathematics by Erwin Kreyszig, John Wiley & Sons, New York.
- 3. A Course in Engineering Mathematics (Vol I) by Dr. B. B. Singh, Synergy Knowledge ware, Mumbai.
- 4. A Text Book of Applied Mathematics (Vol I & II) by P. N. Wartikar and J. N. Wartikar, Pune Vidyarthi Griha Prakashan Pune.
- 5. Higher Engineering Mathematics by H. K. Das and Er. Rajnish Verma, S. Chand & CO. Pvt. Ltd., New Delhi.

## **Reference Books**

- 1. Higher Engineering Mathematics by B. V. Ramana, Tata McGraw-Hill Publications, New Delhi.
- 2. A Text Book of Engineering Mathematics by Peter O" Neil, Thomson Asia Pte Ltd., Singapore.
- 3. Advanced Engineering Mathematics by C. R. Wylie & L. C. Barrett, Tata Mcgraw-Hill Publishing Company Ltd., New Delhi.

## **Engineering Mechanics**

| 24FY103T | Engineering Mechanics | ESC | 3L-0T-0P | 3 Credits |
|----------|-----------------------|-----|----------|-----------|
|          |                       |     |          |           |

| Teaching Scheme      | Examination Scheme                   |
|----------------------|--------------------------------------|
| Lecture: 3 hrs/week  | CA – I: 15 Marks                     |
| Tutorial: 0 hrs/week | Mid-Semester Examination: - 20 Marks |
|                      | CA – II: 15 Marks                    |
|                      | End Semester Exam: 50 Marks          |

## **Course Objectives:**

- 1. To understand basic concepts of mechanics and system of forces.
- 2. To illustrate equilibrium and its application to find unknown forces.
- 3. To locate the centroid and calculate moment of Inertia of plane composite figures.
- 4. To understand the bodies in Dynamic equilibrium and solve the kinematics problems.
- 5. To understand basic dynamics concepts the Work-Energy principle, Impulse-Momentum principle.

## **Course Outcomes:** After the completion of the course the student should be able to:

| CO1 | Carry out resolution and composition of forces for concurrent and no concurrent force system |
|-----|----------------------------------------------------------------------------------------------|
|     | and find unknown force acting on body                                                        |
| CO2 | Draw free body diagram and analyze the body in static equilibrium                            |
| CO3 | Determine the centroid and Moment of Inertia for composite sections.                         |
| CO4 | Analyze the bodies in Dynamic equilibrium and solve the kinematics problems                  |
| CO5 | To apply basic dynamics concepts - the Work-Energy principle, Impulse-Momentum principle     |

## **Course Contents:**

## Unit 1: Resolution and composition of force system

8

Introduction to Mechanics, Force system, concept of Resultant, Composition and Resolution of Forces, Equivalent force system, Moment of a force, Couple, law of parallogram, Varignon's theorem, Resultant of a concurrent and non-concurrent force system

## Unit 2: Equilibrium of rigid body

10

Concept of Equilibrium, Free Body Diagram, Lami's theorem, analytical conditions of equilibrium, Beams: Types of Loads, Types of supports, Analysis of Simple beams, Introduction of Trusses: Perfect Truss, Deficient Truss, Redundant Truss, Analysis of Statically determinate plane trusses by Method of Joints & Method of Sections

Friction: Types of friction, Laws of friction.

### Unit 3: Centroid and moment of Inertia

8

Centroid of areas, Moment of Inertia, Radius of Gyration, Theorems of Moment of Inertia, M.I. of a

## Unit 4: Linear and circular motion of a body

Rectilinear motion, equations of motion, motion diagrams, motion in vertical direction. Circular motion, motion on curved path, supper elevation

## **Unit 5: Kinetics of particles**

8

Laws of motion, D'Alembert's Principle, Work-Energy Principle, Impulse- Momentum Principle

## **Text Books:**

- 1. Text Book of Engineering Mechanics, Bansal R.K. Laxmi Pub, N. Delhi.
- 2. Engineering Mechanics, Bhavikatti, S.S. New Age pub
- 3. A Textbook of Engineering Mechanics, Khurmi R S, S. Chand.
- 4. Engineering Mechanics, Rajshekharan S. Sanakarsubramaniam, USB Publication
- 5. Fundamentals Of Engineering Mechanics, Rajshekaran S, Vikas Pub, N. Delhi

## **Reference Books:**

- 1. Engineering Mechanics (4th Ed.) Timoshenko S. Tata MacGraw Hill, N. Delhi
- 2. Engineering Mechanics Vol. II, Merium T.L., Cenage Laerning.
- 3. Problems & Solutions in Engineering Mechanics, Bhavikatti S.S. New Age Int, N. Delhi
- 4. Engineering Mechanics: Statics & Dynamics, Shames, I.H. pearson Edu, Delhi
- 5. Engineering Mechanics, Sawhney, G. S. PHI Learning

8

## **Engineering Mechanics Lab**

| 24FY103L | Engineering Mechanics Laboratory | ESC | 0L - 0T - 2P | 1 Credits |
|----------|----------------------------------|-----|--------------|-----------|
|          |                                  |     |              |           |

| Teaching Scheme       | <b>Examination Scheme</b>                    |
|-----------------------|----------------------------------------------|
| Practical: 2 hrs/week | CA – I: 15 Marks                             |
|                       | CA – II: 15 Marks                            |
|                       | Practical Examination / Oral (ESE): 20 Marks |

## **Course Objectives:**

- 1. To understand the concepts of basic Engineering Mechanism.
- 2. To understand the systems of forces.
- 3. Provide students with problem solving ability.
- 4. Develop skills to use the basic principles of mechanics in engineering applications.

## **Course Outcomes:** At the end of the course, students will be able to

| CO1 | To know and apply Conditions of static equilibrium to analyze given force system. |
|-----|-----------------------------------------------------------------------------------|
| CO2 | Verify law of Force using bell crank lever apparatus and apparatus.               |
| CO3 | Determination of CG of various laminae.                                           |
| CO4 | Graphical method of analysis of Beam and Truss.                                   |

## **List of Experiments:** Minimum 8 experiments are to be performed based on contents from syllabus

- 1. To verify of Law of Polygon of forces.
- 2. Study of Lami's theorem by Analytical method.
- 3. Calculation of support reaction for beam.
- 4. To verify of law of moments Bell crank lever.
- 5. To verify of law of triangle by using Jib crane.
- 6. Determination of CG of irregular laminae.
- 7. Problems in kinematics.
- 8. Find support reaction of beam by graphical method.
- 9. Problem on truss by method of joints/ method of sections.
- 10. Screw Jack.

## **Computer Programming using C Language**

| 24FY104T | Computer Programming using C Language | PCC | 3L - 0T - 0P | 3 Credits | ] |
|----------|---------------------------------------|-----|--------------|-----------|---|
|----------|---------------------------------------|-----|--------------|-----------|---|

| Teaching Scheme      | Examination Scheme                   |  |  |
|----------------------|--------------------------------------|--|--|
| Lecture: 3 hrs/week  | CA – I: 15 Marks                     |  |  |
| Tutorial: 0 hrs/week | Mid-Semester Examination: - 20 Marks |  |  |
|                      | CA – II: 15 Marks                    |  |  |
|                      | End Semester Exam: 50 Marks          |  |  |

## **Course Objectives:**

- 1. To introduce basic programming environment and programming concepts.
- 2. To develop problem solving skills amongst the students for implementing mathematical and Logical operations.
- 3. To develop the basic concept of algorithm, algorithmic thinking, and flowchart.
- 4. To write compile and debug programs and control order of program using Decision making, looping, switch case in C language.
- 5. To arrange data in arrays and strings implement pointers, structure, file management and dynamic memory allocation.

## **Course Outcomes:** After the completion of the course the student should be able to:

| CO1 | Understand terminology in C language and various operators.                                                                                                                |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Control the sequence of a program & repeat instructions using branching and looping Statements                                                                             |
| CO3 | Comprehend concepts like arrays, strings in C programming language                                                                                                         |
| CO4 | Implement user defined functions for dividing big program into sub programs and later to combine into one for ease of debug and test the program.                          |
| G05 | Use pointers efficiently to support dynamic memory allocation to reduce program execution time and define structures for placing data of different types using single name |
| CO5 | useful for database creation                                                                                                                                               |

## **Course Contents:**

## Unit 1: Introduction to C Language

7

Importance of C language, History, C character set Constants, Types of C Constants, Variables, Types of C Variables, Rules of Variable names, Keywords, The first C program, Input and Output statements, C instructions - Type declaration, arithmetic instructions, Hierrarchy of operations, Data types, Preprocessor Directive. Operators in C: Arithmetic Operators, Relational Operators, Logical Operators, Ternary Operators, Bitwise Operators, Sizeof Operator

Unit 2: Control Statements 6

**Branching**: The if-else statement, multiple statements within if-else, Nested if-else, use of logical operators, if-elseif ladder, Switch-Case, goto

**Looping**: for loop, while loop, do-while loop, nesting of loops, multiple initialisations, Loop interruption-break, continue statements

## **Unit 3:** Arrays and String

6

**Array**: The meaning of an array, One dimensional and Two dimensional arrays, declaration and initialisation of arrays, reading, writing and manipulation of above types of arrays.

**String**: Declaring & intialising character array, String termination, string input and output, standard string library functions

Unit 4: Functions 6

Basics of function, need of user defined function, function declaration, definition, calling function, call by value, passing values between functions, order of passing arguments, return type of function, library functions, recursion, storage classes in C ( automatic, register, static, and external ).

## **Unit 5:** *Pointer and Structures*

9

An introduction to pointers, pointer notations, call by value and call by reference, accessing array elements by pointers, passing array to function, pointers to 2D arrays, passing 2D array to function. Need of structure, Structure declaration, structure variable and memory allocation, accessing structure elements, Nested structures, structure pointer, array of structure, passing structure to Function

## **Text Books:**

- 1. Programming in ANSI C, E. Balguruswamy, McGraw Hill Education Publisher, 9'th Edition, 2024
- 2. Programming and Problem-Solving Using C Language, ISRD Group, McGraw Hill Education Publisher, 9'th Edition, 2012
- 3. Let Us C, Yashwant Kanetkar, BPB Publisher, 20<sup>th</sup> Edition, 2024

## **Reference Books:**

- 1. The 'C' Programming Language, D. M. Ritchie, Pearson Publisher, 2<sup>nd</sup> edition, 1998
- 2. Practical "C" Programming, Steve Oualline, Oreilly Publisher, 3<sup>rd</sup> edition, 2013

## Computer Programming using C Language Lab

| 24FY104L | Computer Programming using C Language Lab | PCC | 0L - 0T - 2P | 1 Credits |
|----------|-------------------------------------------|-----|--------------|-----------|
|----------|-------------------------------------------|-----|--------------|-----------|

| Teaching Scheme       | Examination Scheme                           |
|-----------------------|----------------------------------------------|
| Practical: 2 hrs/week | CA – I: 30 Marks                             |
|                       | CA – II: 30 Marks                            |
|                       | Practical Examination / Oral (ESE): 40 Marks |

## **Course Objective:**

- 1. To design an algorithm to tackle the given problem.
- 2. To apply C programming concepts to solve a given problem.
- 3. To implement programming solutions for the given problem.
- **4.** To analyze the developed program's performance and effectiveness.

## **Course Outcomes:** At the end of successful completion of this course, the student will be able to:

| CO1 | Explain basic concepts and terminology of C language.   |
|-----|---------------------------------------------------------|
| CO2 | Design algorithm to solve the problem.                  |
| CO3 | Build a program for developing algorithm in C Language. |
| CO4 | Analyze a C Program.                                    |

## **List of Experiments:** Minimum 8-10 experiments are to be performed based on contents from syllabus

- 1. Programs based on Input and Output operations, data types in C.
- **2.** Programs based on Operators in C.
- **3.** Programs based on Branching (if-else, nested if else, if -elseif ladder, switch-case).
- **4.** Programs based on Looping (for, while, do-while).
- **5.** Programs based on One-Dimensional array.
- **6.** Programs based on Two-Dimensional array.
- **7.** Programs based on Strings (Character Array).
- **8.** Programs based on Functions.
- **9.** Programs based on Recursion.
- **10.** Programs based on Scope resolution of variables.
- **11.** Programs based on Structure and Array of Structure.
- 12. Programs based on Pointers.

## **Reference Books:**

- 2. Practical "C" Programming, Steve Oualline, Oreilly Publisher, 3<sup>rd</sup> edition, 2013
- 3. Programming in ANSI C, E. Balguruswamy, McGraw Hill Education Publisher, 9'th Edition, 2024
- **4.** Programming and Problem-Solving Using C Language, ISRD Group, McGraw Hill Education Publisher, 9'th Edition, 2012
- 5. Let Us C, Yashwant Kanetkar, BPB Publisher, 20th Edition, 2024

## **Communication Skills**

| 24FY105T | Communication Skills | AEC | 2L-0T-0P | 2 Credits |
|----------|----------------------|-----|----------|-----------|
|          |                      |     |          |           |

| Teaching Scheme      | <b>Examination Scheme</b>            |
|----------------------|--------------------------------------|
| Lecture: 2 hrs/week  | CA – I: 15 Marks                     |
| Tutorial: 0 hrs/week | Mid-Semester Examination: - 20 Marks |
|                      | CA – II: 15 Marks                    |
|                      | End Semester Exam: 50 Marks          |

## **Course Objectives:**

- 1. To know the nature, importance, process, and types of communication.
- 2. To know the concept effective communication and its barrier.
- 3. To improve formal oral skills of the students.
- 4. To improve formal written skills of the students.
- 5. To apply grammar for proper sentence construction.

## Course Outcomes: After the completion of the course the student should be able to:

| CO1 | Illustrate the concept of communication and its process.                               |
|-----|----------------------------------------------------------------------------------------|
| CO2 | Apply the knowledge the Effective communication.                                       |
| CO3 | To exhibit oratorical skills by giving oral presentations.                             |
| CO4 | Compose formal letters, emails and job application with accurate grammar and           |
|     | vocabulary                                                                             |
| CO5 | Utilize the knowledge of Listening skills and reading skills/ Improve listening, note- |
|     | taking and observational skills                                                        |

## **Course Contents:**

### **Unit 1: Fundamentals of Communication**

5

Meaning and definition of communication, Process of communication, Forms of Communication, According to Direction- (upward, downward, horizontal, diagonal), According to Expression (Verbal and Non-verbal) And According to Nature (Formal and informal).

## **Unit 2: Effective Communication**

5

Principles of Effective communication, Barriers to communication, Physical Barrier: Environmental (time, noise, distance, and surroundings), Personal (deafness, stammering, ill-health, spastic, bad handwriting), Mechanical: Machine oriented, Psychological: Day dreaming, prejudice, emotions, blocked mind, generation gap, phobia, status inattentiveness, perception, Language: Difference in language, technical jargons, pronunciation, and allusions, how to overcome the barrier.

## **Unit 3: Formal Oral Communication**

4

Group Discussion, Presentation Skills, Interview Skills, Extempore and Elocution.

Email, Business letter (Enquiry, Order, Complaint letter), Report Writing (Accident Report and Fall in production), Job application letter with resume

Unit 5: LR Skills 4

**Listening skills:** Introduction to listening, Listening versus hearing, Merits of good listening, Types of listening., Techniques of effective listening.

**Reading skills:** Introduction to Reading, Types of Readers and Reading, Barriers to Reading, Strategies for Reading, Comprehension.

## **Reference Books:**

- 1. Communication skills for Engineers by Sunita Mishra & C. Muralikrishna (Pearson).
- 2. Communication Techniques and Skills by R K Chaddha
- 3. Body Language by Allen Pease.
- 4. Speaking Effectively by Jeremy Comfort, Pamela Rogerson, Cambridge University Press New Delhi
- 5. Soft Skills for Managers by Dr. T. Kalyana Chakravarthi, Dr. T. Latha Chakravarthi, Biztantra
- 6. Soft Skills for every one by Jeff Butterfield, Cengage
- 7. Professional communication skills by A.K. Jain, S. Chand
- 8. Developing Communication Skills by Krishna Mohan & Meera Banerji (Macmillan)
- 9. J.D. O'Connor, Better English Pronunciation, CUP, 1980

## **Communication Skills Lab**

| 24FY105L   Communication Skills Lab   AEC   0L - 0T - 2P   1 Credits |
|----------------------------------------------------------------------|
|----------------------------------------------------------------------|

| Teaching Scheme       | <b>Examination Scheme</b>                    |
|-----------------------|----------------------------------------------|
| Practical: 2 hrs/week | CA – I: 15 Marks                             |
|                       | CA – II: 15 Marks                            |
|                       | Practical Examination / Oral (ESE): 20 Marks |

## **Course Objectives:**

- 1. Understand the importance of listening, speaking, reading, and writing skills which are beneficial to enhance communication skill.
- 2. To acquaint students with basic English Grammar and help students in improving language skills.
- 3. To train the students to compose and write the business letters effectively
- 4. To help them communicate effectively and to present their ideas confidently.

## **Course Outcomes:** At the end of the course, students will be able to

| CO1 | Apply the learnt knowledge of LSRW skills while communicating.                               |
|-----|----------------------------------------------------------------------------------------------|
| CO2 | To formulate grammatical sentences correctly and apply communicative techniques effectively. |
| CO3 | Compose formal letters, emails and job application with accurate grammar and vocabulary.     |
| CO4 | To exhibit oratorical skills by giving oral presentations.                                   |

## **List of Experiments:** Minimum 8-10 experiments are to be performed based on contents from syllabus

- 1. How to introduce yourself
- 2. Vocabulary building
- 3. Group Discussion
- 4. Formal presentation on given topic
- 5. Interview techniques
- 6. Extempore
- 7. Tense (sentence construction)
- 8. Drafting Simple application letter and Writing Effective Resume
- 9. Effective reading (newspaper articles)
- 10. Active listening (memorizing)
- 11. Effective Communication and Barriers.
- 12. Report Writing

## **Recommended Books:**

1. Communication Skills by Meenakshi Raman and Sangeeta Sharma, Oxford University Press 2016

1st Edition.

- 2. Communication Skills for Engineers by S. Mishra & C. Muralikrishna (Pearson)
- 3. Basic Communication Skills for Technology by Rutherford, Andrea J. (2002).. Delhi: Pearson Education Asia
- 4. Mastering Communication by Nicky Stanton, Palgrave Master Series
- 5. Comfort, Jeremy, et al. (2011) Speaking Effectively: Developing Speaking Skills for Business English. Cambridge: Cambridge University Press. (Reprint)
- Sharma, R. C. and Krishna Mohan, Basic Correspondence and Report Writing: A Practical Approach to Business and Technical Communication, Tata McGraw-Hill Publishing Company Limited, India ,5th Edition, 2017
- 7. Written Communication in English by Saran Freeman (Orient Longman) 08 Seely, J. The Oxford Guide to Writing and Speaking, Oxford University Press, India 3rd Edition

## Workshop Practices Basic Civil and Mechanical Engineering Lab

| 24FY110L | Workshop Practices Basic Civil and Mechanical | VSEC | 0L - 0T - 4P | 2 Credit |
|----------|-----------------------------------------------|------|--------------|----------|
|          | Engineering Lab                               | VSEC | 0L-01-41 20  | 2 Credit |

## **Workshop Practices Basic Civil Engineering Lab**

| Teaching Scheme       | Examination Scheme                           |
|-----------------------|----------------------------------------------|
| Practical: 2 hrs/week | CA – I: 15 Marks                             |
|                       | CA – II: 15 Marks                            |
|                       | Practical Examination / Oral (ESE): 20 Marks |

## **Course Objectives:**

- 1. To impart basic knowledge of symbols used in Civil Engineering
- 2. To gain hands-on experience in angular measurements.
- **3.** To gain hands-on experience of leveling.

**Course Outcomes:** At the end of the course, students will be able to

| CO1 | Identify and apply symbols in Civil Engineering            |
|-----|------------------------------------------------------------|
| CO2 | Carry out angular measurements by use of Prismatic Compass |
| CO3 | Carry out leveling by Dumpy Level, Auto Level              |
| CO4 | Usage of Sun Diagram                                       |

## Perform any four experiments from the following syllabus

- 1. Identification & Applications of Conventional Symbol in Civil Engineering.
- 2. Study of Prismatic Compass.
- 3. Traversing by Prismatic Compass.
- 4. Leveling by Dumpy Level.
- 5. Leveling by Auto Level.
- 6. Utility of the Sun Diagram for Planning & Designing in Civil Engineering.

## **Workshop Practices Basic Mechanical Engineering Lab**

| Teaching Scheme       | Examination Scheme                           |
|-----------------------|----------------------------------------------|
| Practical: 2 hrs/week | CA – I: 15 Marks                             |
|                       | CA – II: 15 Marks                            |
|                       | Practical Examination / Oral (ESE): 20 Marks |

## **Course Objectives:**

- 1. Possess knowledge of safety, instruments and machines used in workshop.
- 2. Learn to use the techniques, skills, and modern engineering tools necessary for fitting operations

- 3. Have an ability to use the techniques, skills, and modern engineering tools necessary in carpentry and apply them practically.
- 4. Understand concepts of welding, equipment's and an ability to use the techniques, skills, and modern engineering tools necessary for welding operation operations.

## **Course Outcomes:** At the end of the course, students will be able to

| CO1 | Understand basic operations and machines used in manufacturing.             |
|-----|-----------------------------------------------------------------------------|
| CO2 | Understand basic safety features, dos and don'ts to be followed in the lab. |
| CO3 | Do basic operations and operate different tools for manufacturing.          |
| CO4 | Operate different machines for producing simple parts.                      |

## Sample List of Experiments: Every student should perform---

- 1. **Sheet metal Work:** One job on commercial items such as Dust bin, funnel, tray etc.
- 2. Carpentry: One composite job involving dovetail joint, T joint, cross halving joint, pen stand etc.
- 3. **Fitting:** One job Male/Female fitting with operations- Marking, cutting, drilling, tapping filing etc.
- 4. **Welding:** One job on Arc welding- Lap / Butt Joint etc. (For individual student) OR Table, Shoe stand, Bag stand etc. (For 4-6 students)

## **Reference Books:**

- 1. A Course in Workshop Technology, Vol I by B. S. Raghuvanshi, Dhanapat Rai and Sons.
- 2. Elements of Workshop Technology, Vol I by HajaraChaudhari, Media Promoters.
- 3. Workshop Technology, Vol I by Gupta and Kaushik, New Heights.
- 4. Workshop Technology, Vol I by Chapman, The English Language Book Society.
- 5. Workshop Technology, Vol.-I by H.S. Bawa, TMH Publications, New Delhi

## Yoga Education

| 24FY112L | Yoga Education | CC | 0L - 0T - 2P | 1 Credits |
|----------|----------------|----|--------------|-----------|
|          |                |    |              |           |

| Teaching Scheme       | Examination Scheme                           |
|-----------------------|----------------------------------------------|
| Practical: 2 hrs/week | CA – I: 15 Marks                             |
|                       | CA – II: 15 Marks                            |
|                       | Practical Examination / Oral (ESE): 20 Marks |

## **Course Objectives:**

- 1. To learn Message of Vedas and Upanishads
- 2. To learn Four Streams of Yoga,
- 3. To learn Shaddarshanas or the SIX systems of Indian Philosophy,
- 4. To understand Life and message of spiritual masters and Indian Culture
- 5. To understand Anatomy and Physiology, Yoga and Exercise Physiology

**Course Outcomes:** At the end of the course, students will be able to

| CO1 | Learn Message of Vedas and Upanishads.                               |
|-----|----------------------------------------------------------------------|
| CO2 | Learn Four Streams of Yoga.                                          |
| CO3 | Learn Shaddarshanas or the SIX systems of Indian Philosophy.         |
| CO4 | Understand Life and message of spiritual masters and Indian Culture. |
| CO5 | Understand Anatomy and Physiology, Yoga and Exercise Physiology.     |

## **Course Contents:**

**UNIT-I:** Message of Vedas and Upanishads: Search for Happiness, Search for Reality.

**UNIT-II:** Streams of Yoga: Bhakti Yoga, Raja Yoga, Antaranga Yoga, Bahiranga Yoga, Karma Yoga, Secrets of Action, Jnana Yoga.

**UNIT-III:** Shaddarshanas – Nyaya, Vaishesika, Sankhya, Uttaramimamsa, Purvamimamsa, Yoga.

**UNIT-IV:** Life and Message of Spiritual Masters –Sri Ramakrishna Paramahamsa, Maa Sharada Devi, Swami Vivekananda, Indian Culture.

**UNIT-V:** Anatomy and Physiology, Yoga and Exercise Physiology, Yoga & Health - Concept of Health and Pancha Kosha Vivek, Yogic Concept of Health and Disease.

## **Text Books:**

- 1. Rajayoga Swami Vivekananda Ramakrishna Ashrama Publications.
- 2. Hathayoga Pradipika of Swatmarama Kaivalyadhama, Lonavala
- 3. The Science of Yoga Taimini Theosophical Publishing House, Adyar, Madras.
- 4. Yogasutras of Patanjali Hariharananda Aranya, University of Calcutta Press, Calcutta.

## **Reference Books:**

- 1. Patanjal Yoga Pradeepa Omananda Tirtha- Geeta Press, Gorakhpur.
- 2. Gherandasamhita Bihar School of Yoga, Munger, Bihar.
- 3. Shivayogadipika Sadashivabrahmendra, Ananda Ashramagranthavali, Choukhamba Press.
- 4. Yoga Darshan: Swami Niranjanananda-Sri Panchadashanam Paramahamsa Alakh Bara, Deoghar.
- 5. Four chapters on Freedom (commentary on the Yoga



## SANJAY BHOKARE GROUP OF INSTITUTES, MIRAJ.



Faculty of Engineering
An Autonomous Institute

Affiliated to Dr. Babasaheb Ambedkar Technological University, Lonere, Approved By AICTE New Delhi, Recognized by Government of Maharashtra and DTE Mumbai.

## Shri Ambabai Talim Sanstha's Sanjay Bhokare Group of Institutes, Miraj

(An Autonomous Institute)

First Year Engineering Department

## **Syllabus**

For

First Year B. Tech.

(Common for All Branches)

To be Effective from

Academic Year 2024 – 25

Semester – II

## **Engineering Physics**

| 24FY106T | <b>Engineering Physics</b> | BSC | 3L - 0T - 0P | 3 Credits |
|----------|----------------------------|-----|--------------|-----------|
|          |                            |     |              |           |

| Teaching Scheme      | Examination Scheme                   |
|----------------------|--------------------------------------|
| Lecture: 3 hrs/week  | CA – I: 15 Marks                     |
| Tutorial: 0 hrs/week | Mid-Semester Examination: - 20 Marks |
|                      | CA – II: 15 Marks                    |
|                      | End Semester Exam: 50 Marks          |

## **Course Objectives:**

- 1. To provide the knowledge of fundamental concepts of Physics useful in all Engineering disciplines
- 2. To provide a firm grounding in the basic Physics principles and concepts to resolve many Engineering and Technological problem
- 3. To understand and study the Physics principles behind the development of Engineering materials
- 4. Apply Mathematical Tools: Utilize mathematical techniques to model, analyze, and solve problems in engineering physics.
- 5. Understand Optical Principles: Demonstrate a thorough understanding of fundamental concepts in optics, including reflection, refraction, diffraction, interference, and polarization.

## Course Outcomes: After the completion of the course the student should be able to:

| CO1 | Apply the basics of interference, Diffraction and polarization in Engineering applications     |
|-----|------------------------------------------------------------------------------------------------|
| CO2 | Students are able to describe the light propagation in optical fibre, use of Laser and optical |
|     | fibre in Engineering applications                                                              |
| CO3 | Identify types of crystal, planes in crystal and describe structure of solid                   |
| CO4 | Classify magnetic materials, Analyse and interpret the BH curve to understand the magnetic     |
|     | properties of materials and applications of superconductor                                     |
| CO5 | Interpret and demonstrate motion of charged particle in electromagnetic field, Basic concept   |
|     | of Quantum mechanics                                                                           |

## **Course Contents**

## **Unit 1: Interference, Diffraction and Polarization**

8

**Interference** -Introduction, interference in thin film due to reflected light, wedge shaped film, Newton's ring, applications

**Diffraction**- Introduction, types of diffraction, Plane diffraction gritting, resolving power of grating

**Polarization**- Introduction, types of polarization, optical activity and specific rotation, Laurent's half shade polarimeter

## **Unit 2: Fibre optics and LASER**

**Fibre optics** - Principle of optical fibre, structure of optical fibre, acceptance angle, acceptance cone, numerical aperture, application of optical fibre

**LASER** – Characteristics, absorption, spontaneous emission and stimulated emission, pumping, population inversion, Ruby laser, He-Ne laser, applications.

## **Unit 3 Crystal structure and X-ray**

8

**Crystal structure -** fundamental concepts (Lattice, basis, unit cell crystal system), 7 crystal system, cubic structure: (number of atoms per unit cell, atomic radius, coordination number, packing density), axis of symmetry, plane of symmetry, Miller indices, interplanar spacing **X-ray -** X-ray diffraction, line and continuous spectrum of X-ray, applications.

## Unit 4: Magnetic, superconducting and semiconducting materials

8

**Semiconductor physics** - Classification of solid on basis of band theory, intrinsic and extrinsic semiconductor, Fermi level, conductivity of semiconductor, hall effect

**Magnetic materials and superconductor-** Types of magnetic materials (Dia, para and ferro), BH curve, superconductivity, types of superconductors, Meissner effect, application of superconductor

## **Unit 5: Electron optics and Quantum Mechanics**

8

**Electron optics**- Motion of charged particle in transverse electric field, Motion of charged particle in transverse magnetic field, motion of electron in combined effect, Bainbridge mass spectrograph,

**Quantum mechanics-** Wave function & De Broglie hypothesis, Heisenberg uncertainty principle, Schrodinger time independent wave equation.

## **Text Books**

- 1. Engineering Physics M.N.Avadhanulu and P.G. Kshirsagar. S.Chandand Company LTD.
- 2. Modern Physics- B. L. Theraja, S Chand Publication
- 3. Physics for Engineers- M. R. Srinivasan, New age international (P) Limited publishers
- 4. Engineering Physics-R.K. Gaur and S. L.Gupta. Dhanpat Rai Publications Pvt. Ltd.-NewDelhi
- 5. Engineering Physics- Dr. Rakesh Dogra, S. K. Kataria & sons publications
- 6. Engineering Physics- Neeraj Mehta, PHL learning private limited.
- 7. Engineering Physics Dr. L. N. Singh. SynergyKnowledgeware-Mumbai.

## **Reference Books**

- 1. Solid State Physics A.J. Dekker. McMillan India–Limited. .
- 2. Introduction to solid state physics Charles Kittel. John Willey and Sons
- 3. Optics Ajoy Ghatak, MacGraw Hill Education (India) Pvt.Ltd.
- 4. Science of Engineering Materials- C.M. Srivastava and C. Srinivasan. New Age InternationalPvt.Ltd.

8

## **Engineering Physics Lab**

| 24FY106L   Engineering Physics Lab   BSC   0L - 0T - 2P   1 Cred | dits |
|------------------------------------------------------------------|------|
|------------------------------------------------------------------|------|

| Teaching Scheme       | Examination Scheme                           |
|-----------------------|----------------------------------------------|
| Practical: 2 hrs/week | CA – I: 15 Marks                             |
|                       | CA – II: 15 Marks                            |
|                       | Practical Examination / Oral (ESE): 20 Marks |

## **Course Objectives:**

- 1. Introduce Fundamental Concepts: Provide hands-on experience to reinforce the theoretical principles of physics learned in lectures.
- 2. Develop Experimental Skills: Train students in the use of laboratory instruments, techniques, and procedures for conducting physics experiments accurately.
- 3. Enhance Analytical Thinking: Foster critical thinking by encouraging students to analyze experimental data, identify sources of error, and draw meaningful conclusions.
- 4. Bridge Theory and Practice: Enable students to apply theoretical concepts to real-world physical phenomena and engineering applications through practical experimentation.

## **Course Outcomes:** After the completion of the practical's the student should be able to:

| CO1  | Measure Optical Properties: Perform accurate measurements of optical properties such as             |
|------|-----------------------------------------------------------------------------------------------------|
|      | wavelength, radius of curvature, wavelength of different color and thickness of thin wire.          |
| CO2  | Skilfully set up and align optical equipment, including lasers, diffraction gratings, and measuring |
| 002  | devices, for precise experimental outcomes.                                                         |
| CO3  | Understand Semiconductor Basics: Demonstrate an understanding of the working principle and          |
|      | behaviour of a PN junction diode under different biasing conditions.                                |
| GO 4 | Understand Fiber Optic Principles: Demonstrate an understanding of the basic principles of          |
| CO4  | optical fibers, including total internal reflection, numerical aperture, and modes of propagation.  |
|      |                                                                                                     |
| CO5  | Understanding of basic concepts in crystallography, including lattice structures, unit cells,       |
|      | and Miller indices and Determine Lattice Parameters                                                 |

## **List of Experiments:** At least 08-10 experiments should be performed from the following list

- 1. Newton's ring- determination of radius of curvature of Plano convex lens /wavelength of light
- 2. Wedge shaped film- determination of thickness of thin wire
- 3. Calculate the resolving power of grating
- 4. Diffraction grating to measure the wavelength of different colours
- 5. Half shade polarimeter- determination of specific rotation of optically active material
- 6. Laser- Determination of wavelength of He-Ne laser light
- 7. Experiment on fibre optics
- 8. Crystal plane -study of planes with the help of models related Miller indices
- 9. Calculate Miller indices and lattice parameter of cubic crystal by using X-ray diffraction pattern
- 10. PN junction diode characteristics
- 11. Four Probe method- Determination of resistivity of semiconductor
- 12. Hall effect- Determination of Hall coefficient
- 13. Measurement of band gap energy of semiconductors
- 14. Magnetron tube- Determination of 'e/m' by of electron

## **Engineering Mathematics – II**

| FY107T Engineering Mathematics – II | BSC | 3L - 1T - 0P | 4 Credits |
|-------------------------------------|-----|--------------|-----------|
|-------------------------------------|-----|--------------|-----------|

| Teaching Scheme      | Examination Scheme                   |
|----------------------|--------------------------------------|
| Lecture: 3 hrs/week  | CA – I: 15 Marks                     |
| Tutorial: 1 hrs/week | Mid-Semester Examination: - 20 Marks |
|                      | CA – II: 15 Marks                    |
|                      | End Semester Exam: 50 Marks          |

## **Course Objectives:**

- 1. To understand and solve first and higher order differential equations and apply them as a mathematical modelling in electric and mechanical systems.
- 2. To understand and solve first and higher order differential equations by various methods.
- 3. To demonstrate the concept of vector differentiation to interpret the physical and geometrical meaning of gradient, divergence & curl in various engineering problems.
- 4. To identify and sketch of curves in various coordinate system.
- 5. To evaluate multiple integrals and their applications to area and volume.

## **Course Outcomes:** After the completion of the course the student should be able to:

| CO1 | Solve first order and first degree ordinary differential equations and apply them in engineering problems.                                                         |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| CO2 | Solve higher order differential equations and apply them in engineering problems.                                                                                  |  |
| CO3 | Demonstrate the concept of vector differentiation and interpret the physical and geometrical meaning of gradient, divergence &curl in various engineering streams. |  |
| CO4 | Identify and sketch of curves in various coordinate system and understand concept of reduction formulae.                                                           |  |
| CO5 | Evaluate multiple integrals and their applications to area and volume.                                                                                             |  |

## **Course Contents**

## Unit 1: Ordinary Differential Equations of First Order and First Degree and Their 9 Applications

Linear equations; Reducible to linear equations (Bernoulli's equation); Exact differential equations; Equations reducible to exact equations; Engineering Applications.

9

## **Unit 2: Linear Differential Equations with Constant Coefficients**

Introductory remarks - complementary function, particular integral; Rules for finding complementary functions and particular integrals; Method of variation of parameters; Cauchy's homogeneous equations.

Unit 3: Vector Calculus

Scalar and vector fields: Gradient, divergence, and curl; Solenoidal and irrotational vector fields; Vector identities (statement without proofs).

## **Unit 4: Reduction Formulae and Tracing of Curves**

Reduction formulae for  $\int_0^{\frac{\pi}{2}} \sin^n x \ d$ ,  $\int_0^2 \cos^n x \ d$ ,  $\int_0^2 \sin^m x \cos^n x \ dx$ . Tracing of standard curves given in Cartesian, Polar and Parametric forms.

## **Unit 5: Multiple Integral**

9

9

Double integration in Cartesian and polar co-ordinates; Evaluation of double integrals by changing the order of integration and changing to polar form; Triple integral; Applications of multiple integrals to find area as double integral, volume as triple integral and surface area.

## **Text Books**

- 1. Higher Engineering Mathematics by B. S. Grewal, Khanna Publishers, New Delhi.
- 2. Advanced Engineering Mathematics by Erwin Kreyszig, John Wiley & Sons, New York.
- 3. A Course in Engineering Mathematics (Vol II) by Dr. B. B. Singh, Synergy Knowledge ware, Mumbai.
- 4. A Text Book of Applied Mathematics (Vol I & II) by P. N. Wartikar and J. N. Wartikar, Pune Vidyarthi Griha Prakashan, Pune.
- 5. Higher Engineering Mathematics by H. K. Das and Er. Rajnish Verma, S. Chand & CO. Pvt. Ltd., New Delhi.

## **Reference Books**

- 1. Higher Engineering Mathematics by B. V. Ramana, Tata McGraw-Hill Publications, New Delhi.
- 2. A Text Book of Engineering Mathematics by Peter O" Neil, Thomson Asia Pte Ltd., Singapore.
- 3. Advanced Engineering Mathematics by C. R. Wylie & L. C. Barrett, Tata Mcgraw-Hill Publishing Company Ltd., New Delhi.

## **Engineering Graphics**

| 24FY108T | Engineering Graphics | ESC | 3L - 0T - 0P | 3 Credits |
|----------|----------------------|-----|--------------|-----------|
|----------|----------------------|-----|--------------|-----------|

| Teaching Scheme      | Examination Scheme                   |
|----------------------|--------------------------------------|
|                      |                                      |
| Lecture: 3 hrs/week  | CA – I: 15 Marks                     |
| Tutorial: 0 hrs/week | Mid-Semester Examination: - 20 Marks |
|                      | CA – II: 15 Marks                    |
|                      | End Semester Exam: 50 Marks          |

## **Course Objectives:**

- 1. To familiarize with different drawing tools, technical standards and procedures for construction of different geometric and engineering object.
- 2. To understand and develop the ability to project point, line, plane and solids by using 1<sup>st</sup> angle method of projections.
- 3. To understand and develop the ability to project orthographic Projections.
- 4. To prepare you to use the techniques, skills, and modern engineering tools necessary for engineering practice.

## Course Outcomes: After the completion of the course the student should be able to:

| CO1 | Understand the basics of engineering graphics and its applications.                                                                                           |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Visualize and project Orthographic drawing of simple machine components and projections of points by appropriate method.                                      |
| CO3 | Demonstrate and projections of lines and planes by appropriate method.                                                                                        |
| CO4 | Demonstrate and projections of Solids by appropriate method                                                                                                   |
| CO5 | Understand basic commands of CAD and use of Auto CAD 3D Modelling Workspace for practicing lines, solids, lettering and dimensioning in Engineering Graphics. |

## **Course Contents**

## **Unit 1: Introduction to Engineering Drawing:**

6

Principles of Engineering Graphics and their significance, usage of drawing instruments, Drawing standards SP: 46, Types of lines, lettering, dimensioning, scaling conventions. Geometrical construction: Dividing a given straight line into any number of equal parts, bisecting a given angle, drawing a regular polygon given one side, special methods of constructing a polygon.

## **Unit 2: Orthographic Projections and Projections of Points:**

6

Introduction to orthographic projection, drawing of orthographic views of objects from their isometric views. Projection of points lying in four quadrants.

## **Unit 3: Projections Lines and Planes and their Traces:**

Projection of lines parallel and perpendicular to one or both planes, projection of lines inclined to one or both planes. Traces of lines. Projection of planes parallel and perpendicular to one or both planes, projection of planes inclined to one or both planes.

## **Unit 4 Projections of Solids:**

6

Types of solids, projections of solids with axis perpendicular and parallel to HP and VP, solids with axis inclined to one or both the planes. Projection of spheres touching each other.

## **Unit 5: Introduction to Computer Aided Drawing:**

6

Introduction to CAD & Graphical user interface of the CAD software, drafting packages and tools to make drawings.

## **Text Books**

- 1. N.D.Bhatt, "Engineering Drawing", Charotar Publisher, 41th Edition, 2016
- 2. K. V. Nataraajan, A text book of Engineering Graphic, Dhanalakshmi Publishers, Chennai, 2006.
- 3. K. Venugopal and V. Prabhu Raja, Engineering Graphics, New Age International (P) Ltd, 2008.
- 4. Computer Aided Engineering Drawing S. Trymbaka Murthy, -I.K. International Publishing House Pvt. Ltd., New Delhi.

## **Reference Books**

- 1. Cencil Jensen, Jay D.Helsel, Dennis R. Short, "Engineering Drawing & Design", TATA McGRAWHILL,7th Edition, 2012.
- 2. Basant Agrawal and C M Agrawal, "Engineering Graphics", Tata Mc Graw Hill Education Pvt. Ltd., New Delhi, 7<sup>th</sup>

## **Engineering Graphics Lab**

| 24FY108L Engi | ineering Graphics Lab | ESC | 0L - 0T - 2P | 1 Credits |
|---------------|-----------------------|-----|--------------|-----------|
|---------------|-----------------------|-----|--------------|-----------|

| Teaching Scheme       | Examination Scheme                           |
|-----------------------|----------------------------------------------|
| Practical: 2 hr./week | CA – I: 30 Marks                             |
|                       | CA – II: 30 Marks                            |
|                       | Practical Examination / Oral (ESE): 40 Marks |

## **Course Objectives:**

The aim of this course is to provide a base for visualizing and drawing objects in different views which is an essential tool for a design engineer as well as graphics designer.

## **Course Outcomes:** After the completion of the course the student should be able to:

| CO1 | Get acquainted with the basic knowledge of various lines, geometrical constructions and various kinds of scales. |
|-----|------------------------------------------------------------------------------------------------------------------|
| CO2 | Visualize and plot various projections of points and lines.                                                      |
| CO3 | Visualize and plot various projections of planes and solids                                                      |
| CO4 | Gain knowledge about orthographic projections and draw orthographic projections.                                 |

## Minimum 10 experiments (drawing sheets) are to be performed based on contents from syllabus Sample List of Experiments:

- 1. Lines, lettering and dimensioning.
- 2. Geometrical Constructions.
- 3. Orthographic projections.
- 4. Projections of points
- 5. Projection of straight lines
- 6. Projections of planes
- 7. Projections of solids

## **Basic Electrical and Electronics Engineering**

| 24FY109T | Basic Electrical and Electronics Engineering | ESC | 3L - 0T - 0P | 3Credits |
|----------|----------------------------------------------|-----|--------------|----------|
|          |                                              |     |              |          |

| Teaching Scheme      | <b>Examination Scheme</b>            |
|----------------------|--------------------------------------|
| Lecture: 3 hrs/week  | CA – I: 15 Marks                     |
| Tutorial: 0 hrs/week | Mid-Semester Examination: - 20 Marks |
|                      | CA – II: 15 Marks                    |
|                      | End Semester Exam: 50 Marks          |

## **Course Objectives:**

- 1. To equip the students with an understanding of the fundamental principles of DC and AC electrical circuits.
- 2. To introduce the working principles of digital electronics and applications of fundamental electronic devices and circuits.
- 3. To identify various measurement instruments and their use in electric and electronic measurements.

## **Course Outcomes:** After completion of this course, students will be able to:

| CO1 | Apply fundamental concepts and circuit laws to solve simple DC and AC circuits                 |
|-----|------------------------------------------------------------------------------------------------|
| CO2 | Interpret the construction and working of different types of electrical machines               |
| CO3 | Analyse building blocks of basic dc power supply                                               |
| CO4 | Outline the principle of BJT and its configuration. and digital number system with basic gates |
| CO5 | Apply the knowledge of measuring instruments in electronic instrumentation system              |

## **Contents:**

## **UNIT-I: Electrical Circuits**

DC Circuits: Circuit Components: Conductor, Resistor, Inductor, Capacitor, Ohm's Law, Kirchhoff's Laws, Independent and Dependent Sources, Simple problems - Nodal Analysis, Mesh analysis with independent sources only (Steady state), Star-Delta Transformation. AC Circuits: AC Signal Parameters, Waveforms, Average value, RMS Value, Instantaneous power, active power, reactive power and apparent power, power factor – Steady state analysis of RLC circuits.

## **UNIT-II: Electrical Machines**

**D**ifference between Generator & motors, DC motors: Construction, working principle, types, characteristics, Back emf and Torque Equation. Working principle of Induction motor. Single Phase Transformer: Construction and working.

## **UNIT-III: Rectifiers and Power Supplies**

PN Junction diode: Principle of operation, V-I characteristics, Diode current equation, principle

of avalanche breakdown. Block diagram description of a dc power supply, working of a full wave bridge rectifier, capacitor filter (no analysis), working of Zener diode and its application as voltage regulator. Working of linear voltage regulators – 78xx and 79xx.

## UNIT-IV: BJT it's configuration and Basic of number system

Bipolar Junction Transistors: PNP and NPN structures, Principle of operation, relation between current gains in CE, CB and CC, input and output characteristics of common emitter configuration. Number system, Conversion, arithmetic operation, Basic gates, universal gates

## **UNIT-V: Measurements and Instrumentation**

Functional elements of an instrument, working principle of: Moving Coil and Moving Iron instruments, Ammeter, voltmeter, wattmeter, Energy meter, Block diagram & working of: Multimeter, Function Generator and Digital Storage Oscilloscope

## **TEXT BOOKS: -**

- Kothari DP and I.J Nagrath, "Basic Electrical and Electronics Engineering",
   Second Edition, McGraw Hill Education, 2020
- 2. Boylstad, Electronics Devices and Circuits Theory, Pearson Education
- 3. A.K. Sawhney, Puneet Sawhney 'A Course in Electrical & Electronic Measurements & Instrumentation', Dhanpat Rai and Co, New Delhi, 2015

## **REFERENCE BOOKS: -**

- 1. Millman Halkias: Electronic Devices and Circuits, McGraw-Hill Publication, 2000.
- 2. Donald Neaman, Electronic Circuit Analysis and Design, McGraw-Hill Publication, 3rd Edition
- 3. B. L. Theraja, Electrical Technology Volume I, S. Chand.
- 4. V. N. Mittal and Arvind Mittal, Basic Electrical Engineering, McGraw-Hill Publication.
- 5. D C Kulshreshtha, "Basic Electrical Engineering", Tata McGraw Hill, 2010
- 6. Modern Digital Electronics By R.P.Jain, Fourth Edition, Tata McGraw-Hill Education.
- 7. Digital Electronics: Principles and Integrated Circuits By A.K. Maini, Wiley India Publication

## **Basic Electrical and Electronics Engineering Lab**

| 24FY109L | Basic Electrical and Electronics Engineering Lab | VSEC | 0L - 0T - 2P | 1 Credits |
|----------|--------------------------------------------------|------|--------------|-----------|
|          |                                                  |      |              |           |

| Teaching Scheme       | Examination Scheme                           |
|-----------------------|----------------------------------------------|
| Practical: 2 hrs/week | CA – I: 30 Marks                             |
|                       | CA – II: 30 Marks                            |
|                       | Practical Examination / Oral (ESE): 40 Marks |

## Course Outcomes: After the completion of the practicals the student should be able to:

| CO1 | Interpret different types of resistors, capacitors and Inductors.  |
|-----|--------------------------------------------------------------------|
| CO2 | Analyse and verify ohms law with VI characteristics of a PN diode. |
| CO3 | Outline the working of Half and Full wave rectifiers.              |
| CO4 | Outline the principle and logic of logic gates.                    |
| CO5 | Verify Universal logic gates                                       |

## List of Experiments At least 08-10 experiments should be performed from the following list

- 1. Familiarization with Resistor
- 2. Familiarization with Capacitor
- 3. Familiarization with Inductor
- 4. Study of Ohm's law
- 5. Study of VI characteristics of a diode
- 6. Study of Half wave rectifier
- 7. Study of Full wave rectifier
- 8. Verification and interpretation of truth table for AND, OR, NOT gates.
- 9. Verification and interpretation of NAND gate as Universal gate.
- 10. Verification and interpretation of NOR gate as Universal gate.

## **Basic Civil and Mechanical Engineering**

| 24FY110T Basic Civil and Mechanical Engineering | ESC | 3L - 0T - 0P | 3 Credits |
|-------------------------------------------------|-----|--------------|-----------|
|-------------------------------------------------|-----|--------------|-----------|

| Teaching Scheme      | Examination Scheme                   |  |
|----------------------|--------------------------------------|--|
| Lecture: 3 hrs/week  | CA – I: 15 Marks                     |  |
| Tutorial: 0 hrs/week | Mid-Semester Examination: - 20 Marks |  |
|                      | CA – II: 15 Marks                    |  |
|                      | End Semester Exam: 50 Marks          |  |

## **Course Objectives:**

- 1. To impart basic knowledge of Civil and Mechanical Engineering.
- 2. To familiarize scope Civil Engineering in the development of society.
- 3. To gain basic knowledge of surveying methods-linear, angular measurement and levelling
- **4.** To understand the Principles of Thermal Engineering and Power Generation.
- **5.** To develop a Fundamental Understanding of Machines, Mechanisms, and Manufacturing Processes.

## Course Outcomes: After the completion of the course the student should be able to:

| CO1 | Understand Principles of Planning, Basic Engineering properties and uses of materials. |
|-----|----------------------------------------------------------------------------------------|
| CO2 | Understand the Building Components and suitability of the foundation.                  |
| CO3 | Understand surveying methods of linear, angular measurement and levelling              |
| CO4 | Explain fundamental concepts of thermal engineering and internal combustion engines.   |
| CO5 | Identify and describe basic machine elements, mechanisms, and manufacturing processes. |

## **Course Contents**

## **Basic Civil Engineering**

## Unit 1: Relevance of Civil Engineering and Building Planning

8

Various Branches of Civil Engineering, Role of Civil Engineer in various construction activities,

Principles of Planning, Building Bye-Laws: Building Line, Control line, Height of Building, Open Space requirements, F.S.I., setbacks

**Basic Engineering properties and uses of materials**: Earth, Bricks, Timber, Stones, sand, Aggregates, Cement, Mortar, Concrete, Steel, Bitumen, Glass, FRP, composite materials.

## **Unit 2: Building Components & Building Planning**

8

**Sub-structure:** Types of soil and rocks as foundation strata, concept of bearing capacity, foundation, Functions of foundation, types of foundations: shallow and deep and their suitability.

**Super-structure:** Elements of super-structures and their functions.

## Unit 3: Surveying 10

Principles of surveying, Aim and Classification of surveying, Applications of Surveying,

Chain Surveying: Introduction to metric chain and tapes, Nominal scale and R.F., Ranging, Chaining and

Offsetting, Errors in chaining

**Compass survey**: Introduction, Meridian, Bearing and its types, System of bearing, Types of compass: Prismatic and Surveyor's compass. Calculation of included angles, Correction for Local attraction, Advantages and disadvantages of Compass Survey

Levelling: Terms, Study and Temporary adjustments of Dumpy Level, Auto Level, HI and Rise and Fall method.

## **Basic Mechanical Engineering**

## **Unit 4: Introduction to Thermal Engineering**

5

Thermodynamic system, properties, state, process, cycle, path and point functions, heat and work, internal energy, thermodynamic equilibrium, Zeroth law, first law of thermodynamics. Constructional details and working of I C Engine, two stroke-four stroke engines, applications of I.C. Engines. Power Plant: Types of Power plant; Gas power plant, Thermal power plant, Hydroelectric power plant, Nuclear power plant, Automobiles: Basic definitions and objectives. Introduction to Refrigeration and Air Conditioning

## **Unit 5: Basics of Machines and Mechanisms**

3

Introduction, classification of links, pairs, kinematic chains, plane motion; mechanism and machines, Introduction to Belts and chain drives, Introduction to Manufacturing processes.

## **Text Books**

| 1 | Hiraskar G.K.        | Basic Civil Engineering           | Dhanpat Rai Pub.                        |
|---|----------------------|-----------------------------------|-----------------------------------------|
| 2 | Gole L.G.            | Basic Civil Engineering           | Mahalaxmi Pub,Kolhapur                  |
| 3 | Punmia,B.C. &        | Basic Civil Engineering           | Laxmi,pub                               |
| 4 | P. K. Nag            | Engineering Thermodynamics        | Tata McGraw Hill, New Delhi 3rd ed.2005 |
| 5 | V.Ganesan            | Internal Combustion Engines       | Tata McGraw Hill                        |
| 6 | RS Khurmi , JK Gupta | A Textbook of Workshop Technology | S.Chand                                 |

## **Reference Books**

| 1 | N.N.Basak.                      | Surveying and Levelling                         | Mc Graw Hill Pub.Delhi |
|---|---------------------------------|-------------------------------------------------|------------------------|
| 2 | Dr.B.P.Varma                    | Civil Engineering Drawing and House<br>Planning | Khanna Publishers      |
| 3 | Domkundwar, Arora<br>Domkundwar | Power Plant Engineering                         | Dhanpat Rai & Co.      |
| 4 | RS Khurmi , JK Gupta            | Theory of Machines                              | S.Chand                |

## **Energy and Environment**

| 24FY111T Energy and Environment | IKS | 2L - 0T - 0P | 2 Credits |
|---------------------------------|-----|--------------|-----------|
|---------------------------------|-----|--------------|-----------|

| Teaching Scheme Examination Scheme |                                      |
|------------------------------------|--------------------------------------|
| Lecture: 2 hrs/week                | CA – I: 15 Marks                     |
| Tutorial: 0 hrs/week               | Mid-Semester Examination: - 20 Marks |
|                                    | CA – II: 15 Marks                    |
|                                    | End Semester Exam: 50 Marks          |

## **Course Objectives:**

- 1. To impact the knowledge of environmental education to the students of engineering and technology.
- 2. To explain basic concepts of sources causes, effects and control measures of environmental pollution.
- 3. To understand the role of individual for the protection of environment.

## **Course Outcomes:** After the completion of the course the student should be able to:

| CO1 | Know and understand about components and segments of environment ecosystem and its           |
|-----|----------------------------------------------------------------------------------------------|
| COI | types.                                                                                       |
| CO2 | Understand the pollutants such as sources and effects.                                       |
| CO3 | Understand and to explain types of energies such as wind energy, solar energy, Hydro energy  |
|     | etc.                                                                                         |
| CO4 | Understand and explain various types of air pollution, their effects and control measures.   |
| CO5 | Know the various types of water pollution, sources, waste water treatment, effects of water. |

## **Course Contents:**

Unit 1: Environment 6

Introduction, Components of Environment, Types of Environments, Brief discussion on Segment Of Environment, Environmental Pollution, and Ecosystem: Types of Ecosystems, Components of Ecosystem

Unit 2: Air Pollution 6

Introduction, Brief discussion on air pollutants, Sources of Air Pollution: Pollutants from Industry, Pollution by Automobiles, Effect of Air Pollutions: Acid rain, Green House Effect, Global warming; Brief discussion on Control of Air Pollution.

## **Unit 3: Energy and its conservation**

6

Importance of energy and its related issues. Quantifying energy, types of energy sources and uses. Conventional energy sources. Non-conventional energy sources, Energy Consumption: Historical Patterns, energy conservation practices, non-conventional energy generation potential of India.

Introduction, Sources of Energy, Renewable sources of Energy: Solar Energy, Hydro Energy, Tidal Energy, Wind Energy, Biomass Energy, Geothermal Energy, Non-Renewable Energy Sources Coal, Petroleum, Natural Gas.

## **Unit 5: Water and Soil Pollution**

6

Introduction, Types of Water Pollutants, Sources of Water Pollution, Methods to remove Impurities in water, Treatment of Industrial waste water: Activated Sludge Process, Impact of Water Pollution on Human Health, Water as a carrier for the transmission of diseases. Sources of Soil Pollution, Harmful effects of Soil Pollution, Control of Soil Pollution.

## **Reference Books:**

- 1. Coping with Water Scarcity: Addressing the Challenges by Iacovos Iacovides, Ian Cordery, and Luis Santos Pereira (2009)
- 2. Water Security in India: Hope, Despair, and the Challenges of Human Development by Ashok Chandra Shukla and Vandana Asthana (2014)
- 3. Energy Management and Conservation by K. V. Sharma and P. Venkataseshaiah (2011)
- 4. Energy Engineering and Management (Second Edition) by Amlan Chakrabarti (2011).
- 5. 2021-22 Syllabus of IIT Delhi for subjects "ESL727 Energy and Environment", "ESL740 Non-Conventional Sources of Energy" and "HSL703 Perspectives on climate change: Implications"
- 6. World Commission non-Environment and Development. 1987.Our Common Future. Oxford University Press.
- 7. Khanduri, I., Pandey, M., Maikhuri, R. 2006. Environment and Ecology, Trans media Publication Srinagar Garhwal
- 8. P.D. Sharma, 2012 Ecology and Environment. Rastogi Publication

## **Integrated Personality Development**

| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |
|--------------------------------------------------------|
|--------------------------------------------------------|

| Teaching Scheme Examination Scheme |                                              |
|------------------------------------|----------------------------------------------|
| Practical: 2 hr./week              | CA – I: 15 Marks                             |
|                                    | CA – II: 15 Marks                            |
|                                    | Practical Examination / Oral (ESE): 20 Marks |

## **Course Introduction:**

The Need for Values: - Students will learn about the need for values as part of their holistic development to become successful in their many roles - as ambitious students, reliable employees, caring family members, and considerate citizens

## Course Outcomes: After the completion of the course the student should be able to:

| CO1 | To provide students with soft skills that complement their hard skills, making them more marketable when entering the workforce.                                           |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | To enhance awareness of India's glory and global values, and to create considerate citizens who strive for the betterment of their family, college, workforce, and nation. |
| CO3 | To inspire students to strive for a higher sense of character by learning from role models who have lived principled, disciplined, and value-based lives.                  |
| CO4 | To encourage students to build stronger familial bonds and contribute positively to their communities through service and ethical living.                                  |

## **Course Content:**

| UNIT I   | A.Begin with the<br>End in Mind | Students will learn to visualize there future goals and will structure their lives through smart goals to give themselves direction and ultimately take them to where they want to go.     |  |  |
|----------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|          | B.Being Addiction -<br>Free     | Students will explore the detrimental effects of addictions on one's health, personal life, and family life. They will learn how to take control of their life by becoming addiction free. |  |  |
| UNIT II  | A. Teamwork & Harmony           | Students will learn the six steps of teamwork and harmony that are essential for students': professional and daily life.                                                                   |  |  |
|          | B.Leading Without<br>Leading    | Students will explore a new approach to Leadership through humility.                                                                                                                       |  |  |
| UNIT III | A.An ideal Citizen              | Students will learn that to become value-based citizens, they must first develop good values in their lives They start by exploring the values of responsibility and integrity             |  |  |

|         | B. Forgive & Forget     | Students will understand the importance and benefits that forgiveness plays in their personal and professional life. They will learn to apply this knowledge in realistic situations                              |  |
|---------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|         | A.Stress<br>Management  | Students will learn to cope with current and future causes of stress.                                                                                                                                             |  |
| UNIT IV | B. Impact of<br>Company | Students will understand that the type of company that we keep, has a crucial rale in determining who we are and who we will become.  They will develop the ability to create a positive environment around them. |  |

## Minimum 08 assignments on following topics.

- 1. Begin with the End in Mind
- 2. Being Addiction Free
- 3. Teamwork & Harmony
- 4. Leading Without Leading
- 5. An ideal Citizen
- 6. Forgive & Forget
- 7. Stress Management
- 8. Impact of Company

## **NSS**

| 24FY113L | 24FY113L | NSS | CC | 0L - 0T - 2P | 1 Credits |
|----------|----------|-----|----|--------------|-----------|
|----------|----------|-----|----|--------------|-----------|

| Teaching Scheme       | Examination Scheme                           |
|-----------------------|----------------------------------------------|
| Practical: 2 hr./week | CA – I: 15 Marks                             |
|                       | CA – II: 15 Marks                            |
|                       | Practical Examination / Oral (ESE): 20 Marks |

## **Course Content:**

- **Unit 1:** Introduction and Basic Concepts of NSS History, Philosophy, Aims & objectives of NSS Organizational structure, Concept of regular activities, Special camping, Day Camps. Basis of adoption village/slums, Methodology of conducting Survey.
- **Unit 2:** Youth and community mobilization Definition, Profile of youth, Categories of youth, Issues, Challenges and opportunities for youth, Youth as an agent of social change, Youth-adult partnership, Mapping of community stakeholders, identifying methods of mobilization, Needs & importance of volunteerism.
- **Unit 3:** Importance and Role of Youth Leadership Meaning and types of leadership, Qualities of good leaders; Traits of leadership, Importance and role of youth leadership.
- **Unit 4:** Life Competencies and skill Definition and importance of life competencies, Communication, Interpersonal, Problem solving and decision making, Positive thinking, Self-confidence and self-esteem, Life goals, Stress and time management
- **Unit 5:** Social Harmony and National Integration Indian history and culture, Role of youth in peace-building and conflict resolution, Role of youth in Nation building, Youth Development Programmes in India National Youth Policy, Youth development programmes at the National Level, State Level and voluntary sector, Youth-focused and Youth-led organizations.