
Data Structures Lab (ECS2024)

P a g e 1 | 97

DEPARTMENT OF ELECTRONICS AND COMPUTER

SCIENCE ENGINEERING

LIST OF EXPERIMENTS

Ex.No.

Name of the Experiment
Date of

Experiment

Date of

Submission

Page

No

Faculty

Signature

 1.

Write code and understand the concept

Variable, Data type, and Data Object

 2. Write code and understand the concept List

in data structure

 3. Write code and understand the concept

Queue in data structure

 4. Write code and understand the concept

Array in data structure

 5. Write code and understand the concept

Graph, Trees in data structure

 6. Write code and understand the concept

Hashing, Hash tables in data structure

 7. Write code and understand the concept Search

Algorithms (linear Search, Binary Search)

 8. Write code and understand the concept

Sorting Algorithm (Bubble Sort, Insertion

Sort)

9. Write code and understand the concept

Algorithms Technique on Greedy Approach

Data Structures Lab (ECS2024)

P a g e 2 | 97

 Experiment No-1

Aim:

Write code and understand the concept Variable, Data Type and Data Object in C

Theory:

Variables

- A variable is a named storage location that holds a value.

- Variables have a data type, which determines the type of value they can store.

 - Variables are key building elements of the C programming language used to store and

modify data in computer programs.

 -Each variable has a unique identifier, its name, and a data type describing the type of data

it may hold.

 Rules for Naming Conventions in C

• Names can contain letters, digits and underscores.

• Names must begin with a letter or an underscore (_)

• Names are case-sensitive (myVar and myvar are different variables)

• Names cannot contain whitespaces or special characters like !, #, %, etc.

• Reserved words (such as int) cannot be used as names.

Syntax:

 data_type variable_name;

Data Types-

-A data type is a characteristic of the data that tells the compiler how to interpret the value

-Data types are used when defining variables and functions

Data Structures Lab (ECS2024)

P a g e 3 | 97

Primitive Data Types -Primitive data types are the most basic data types that are used for

representing simple values such as integers, float, characters, float, double, void etc.

Derived Data Types- The data types that are derived from the primitive or built-in datatypes are
referred to as Derived Data Types such as array, pointers, function

User Defined Data Types- The user-defined data types are defined by the user himself such as
structure, union, Enum

Primitive Data Types:

 1)Integer Data Type

The integer datatype in C is used to store the integer numbers (any number including

positive, negative and zero without decimal part).

Octal values, hexadecimal values, and decimal values can be stored in int data type in C.

• Range: -2,147,483,648 to 2,147,483,647

• Size: 4 bytes

• Format Specifier: %d

Syntax of Integer

We use int keyword to declare the integer variable:

 B int var_name;

https://www.geeksforgeeks.org/c-derived-data-types/
https://www.geeksforgeeks.org/c-user-defined-data-types/
https://www.geeksforgeeks.org/int-1-sign-bit-31-data-bits-keyword-in-c/

Data Structures Lab (ECS2024)

P a g e 4 | 97

2)Character Data Type

-Character data type allows its variable to store only a single character.

-The size of the character is 1 byte. It is the most basic data type in C.

- It stores a single character and requires a single byte of memory in almost all compilers.

• Range: (-128 to 127) or (0 to 255)

• Size: 1 byte

• Format Specifier: %c

Syntax of char

The char keyword is used to declare the variable of character type:

 char var_name;

3)Float Data Type

-In C programming float data type is used to store floating-point values.

 - Float in C is used to store decimal and exponential values.

 - It is used to store decimal numbers (numbers with floating point values) with single

precision.

• Range: 1.2E-38 to 3.4E+38

• Size: 4 bytes

• Format Specifier: %f

Syntax of float

The float keyword is used to declare the variable as a floating point:

 float var_name;

4)Double Data Type

A Double data type in C is used to store decimal numbers (numbers with floating point

values) with double precision. It is used to define numeric values which hold numbers with

decimal values in C.

The double data type is basically a precision sort of data type that is capable of holding 64

bits of decimal numbers or floating points.

https://www.geeksforgeeks.org/c-float-and-double/
https://www.geeksforgeeks.org/c-float-and-double/

Data Structures Lab (ECS2024)

P a g e 5 | 97

 Since double has more precision as compared to that float then it is much more obvious that

it occupies twice the memory occupied by the floating-point type.

It can easily accommodate about 16 to 17 digits after or before a decimal point.

• Range: 1.7E-308 to 1.7E+308

• Size: 8 bytes

• Format Specifier: %lf

Syntax of Double

The variable can be declared as double precision floating point using the double keyword:

double var_name;

5)Void Data Type

The void data type in C is used to specify that no value is present.

It does not provide a result value to its caller. It has no values and no operations

 . It is used to represent nothing. Void is used in multiple ways as function return type, function

arguments as void, and pointers to void.

Syntax:

void *name_of_pointer;

2)Derived Data Types:

 1. Functions

A function is called a C language construct which consists of a function-body associated

with a function-name.

 In every program in C language, execution begins from the main function, which gets

terminated after completing some operations which may include invoking other functions.

Function Declaration

return_type function_name(data_type param1, data_type param2, ...);

https://www.geeksforgeeks.org/void-pointer-c-cpp/

Data Structures Lab (ECS2024)

P a g e 6 | 97

 2. Arrays

Array in C is a fixed-size collection of similar data items stored in contiguous memory

locations.

 An array is capable of storing the collection of data of primitive, derived, and user-defined

data types.

Array Declaration

data_type array_name [size];

 3.Pointer

A pointer in C language is a data type that stores the address where data is stored. Pointers

store memory addresses of variables, functions, and even other pointers.

Pointer Declaration

data_type * ptr_name;

3)User-Defined Data Types:

 1. Structure

As we know, C doesn’t have built-in object-oriented features like C++ but

structures can be used to achieve encapsulation to some level.

Structures are used to group items of different types into a single type.

The “struct” keyword is used to define a structure.

The size of the structure is equal to or greater than the total size of all of its

members.

Syntax-

struct structure_name {

 data_type member_name1;

 data_type member_name1;

}

https://www.geeksforgeeks.org/structures-c/

Data Structures Lab (ECS2024)

P a g e 7 | 97

2. Union

Unions are similar to structures in many ways. What makes a union different is

that all the members in the union are stored in the same memory location

resulting in only one member containing data at the same time. The size of the

union is the size of its largest member. Union is declared using the “union”

keyword.

Syntax

union union_name {

 datatype member1;

 datatype member2;

 ...

};

3.Enumeration (enums)

Enum is short for “Enumeration”. It allows the user to create custom data types

with a set of named integer constants. The “enum” keyword is used to declare

an enumeration. Enum simplifies and makes the program more readable.

Syntax

enum enum_name {const1, const2, ..., constN};

4)Typedef

typedef is used to redefine the existing data type names. Basically, it is used to

provide new names to the existing data types. The “typedef” keyword is used

for this purpose;

Syntax

typedef existing_name alias_name;

https://www.geeksforgeeks.org/c-unions/
https://www.geeksforgeeks.org/enumeration-enum-c/
https://www.geeksforgeeks.org/typedef-in-c/

Data Structures Lab (ECS2024)

P a g e 8 | 97

Data Objects:

- A data object is a region of memory that stores a value.

- Data objects can be variables, constants, or expressions.

Conclusion:

In C programming, understanding variables, data types, and data objects is crucial for

effective coding.

- Variables provide named storage for values.

- Data types determine the type of value a variable can hold.

- Data objects, including variables, constants, and expressions, store values in memory.

Sample program-

#include <stdio.h>

int main() {

 // Variable declarations (data objects)

 int age; // Variable of type int

 float height; // Variable of type float

 char initial; // Variable of type char

 // Assigning values to variables

 age = 25; // Assigning an integer value

 height = 5.9; // Assigning a floating-point value

 initial = 'A'; // Assigning a character value

 // Printing the values

 printf("Age: %d years\n", age); // %d is used for int

 printf("Height: %.2f feet\n", height); // %.2f is used for float

 printf("Initial: %c\n", initial); // %c is used for char

Data Structures Lab (ECS2024)

P a g e 9 | 97

 // Using an array (derived data type)

 int scores[5] = {90, 85, 78, 92, 88}; // Array of integers

 printf("Scores: ");

 for (int i = 0; i < 5; i++) {

 printf("%d ", scores[i]); // Accessing array elements

 }

 printf("\n");

 return 0; // Indicating successful execution

}

 Output-

Data Structures Lab (ECS2024)

P a g e 10 | 97

 Experiment No-2

Aim:

Write code and understand the concept List in data Structure.

Theory:

List:

A list is a linear data structure that stores a collection of elements in a specific order.

The list can be defined as an abstract data type in which the elements are stored in an ordered

manner for easier and efficient retrieval of the elements

List Data Structure allows repetition that means a single piece of data can occur more than once in

a list

It is very much similar to the array but the major difference between the array and the list data

structure is that array stores only homogenous data in them whereas the list (in some programming

languages) can store heterogeneous data items in its object. List Data Structure is also known as a

sequence.

Uses of Linked List

• The list is not required to be contiguously present in the memory. The node can reside

anywhere in the memory and linked together to make a list. This achieves optimized

utilization of space.

• list size is limited to the memory size and doesn't need to be declared in advance.

• Empty node cannot be present in the linked list.

• We can store values of primitive types or objects in the singly linked list.

Data Structures Lab (ECS2024)

P a g e 11 | 97

Types of Lists:

1)singly linked list

2)Doubly linked list

 3) Circular linked list

1)singly linked list

 A singly linked list is a fundamental data structure in computer science and programming,

it consists of nodes where each node contains a data field and a reference to the next node in

the node.

The last node points to null, indicating the end of the list.

This linear structure supports efficient insertion and deletion operations, making it widely used

in various applications. In this tutorial, we'll explore the node structure, understand the

operations on singly linked lists (traversal, searching, length determination, insertion, and

deletion), and provide detailed explanations and code examples to implement these operations

effectively.

Node Structure: A node in a linked list typically consists of two components:

1. Data: It holds the actual value or data associated with the node.

2. Next Pointer or Reference: It stores the memory address (reference) of the next node

in the sequence.

Head and Tail: The linked list is accessed through the head node, which points to the first

node in the list. The last node in the list points to NULL or nullptr, indicating the end of the

list. This node is known as the tail node.

Data Structures Lab (ECS2024)

P a g e 12 | 97

2)Doubly linked list.

A doubly linked list is a data structure that consists of a set of nodes, each of which contains a

value and two pointers, one pointing to the previous node in the list and one pointing to the

next node in the list.

This allows for efficient traversal of the list in both directions, making it suitable for

applications where frequent insertions and deletions are required.

A doubly linked list is a more complex data structure than a singly linked list, but it offers

several advantages.

The main advantage of a doubly linked list is that it allows for efficient traversal of the list in

both directions. This is because each node in the list contains a pointer to the previous node

and a pointer to the next node.

This allows for quick and easy insertion and deletion of nodes from the list, as well as

efficient traversal of the list in both directions.

Representation of Doubly Linked List in Data Structure

In a data structure, a doubly linked list is represented using nodes that have three fields:

1. Data

2. A pointer to the next node (next)

3. A pointer to the previous node (prev)

3) Circular linked list

A circular linked list is a special type of linked list where all the nodes are connected to

form a circle.

 Unlike a regular linked list, which ends with a node pointing to NULL, the last node in a

circular linked list points back to the first node.

Data Structures Lab (ECS2024)

P a g e 13 | 97

This means that you can keep traversing the list without ever reaching a NULL value.

Types of Circular Linked Lists

1)Circular Singly Linked List

2) Circular Doubly Linked List

1)Circular Singly Linked List

In a circular Singly linked list, the last node of the list contains a pointer to the first node of

the list. We can have circular singly linked list as well as circular doubly linked list.

We traverse a circular singly linked list until we reach the same node where we started. The

circular singly liked list has no beginning and no ending. There is no null value present in the

next part of any of the nodes.

Circular linked list is mostly used in task maintenance in operating systems. There are many
examples where circular linked list is being used in computer science including browser surfing
where a record of pages visited in the past by the user, is maintained in the form of circular linked
lists and can be accessed again on clicking the previous button

The following image shows a circular singly linked list.

2)Circular Doubly Linked List
.

Circular doubly linked list is a more complexed type of data structure in which a node contains pointers

to its previous node as well as the next node.

Circular doubly linked list doesn't contain NULL in any of the node. The last node of the list contains

the address of the first node of the list.

 The first node of the list also contains address of the last node in its previous pointer.

Due to the fact that a circular doubly linked list contains three parts in its structure therefore, it

demands more space per node and more expensive basic operations. However, a circular doubly linked

list provides easy manipulation of the pointers and the searching becomes twice as efficient

A circular doubly linked list is shown in the following figure.

Data Structures Lab (ECS2024)

P a g e 14 | 97

.

Operations on Lists:

1. Insertion (at beginning, end, or specific position)

2. Deletion (at beginning, end, or specific position)

3. Traversal (printing or accessing elements)

4. Search (finding a specific element)

Insertion
The insertion into a singly linked list can be performed at different positions. Based on the

position of the new node being inserted, the insertion is categorized into the following

Data Structures Lab (ECS2024)

P a g e 15 | 97

Deletion and Traversing

The Deletion of a node from a singly linked list can be performed at different positions.

Based on the position of the node being deleted, the operation is categorized into the

following categories

Data Structures Lab (ECS2024)

P a g e 16 | 97

Sample Program-

Insert a node in linked list

#include <stdio.h>

#include <stdlib.h>

// Structure for a Node

struct Node {

 int data;

 struct Node* next;

};

// Function to create a new node

struct Node* createNode(int value) {

 struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));

 newNode->data = value;

 newNode->next = NULL;

 return newNode;

}

// Function to insert a node at the beginning of the linked list

void insertAtBeginning(struct Node** head_ref, int new_data) {

 // Create a new node

 struct Node* new_node = createNode(new_data);

 // Make next of new node as head

 new_node->next = *head_ref;

 // Move the head to point to the new node

 *head_ref = new_node;

}

Data Structures Lab (ECS2024)

P a g e 17 | 97

// Function to print the linked list

void printList(struct Node* node) {

 while (node != NULL) {

 printf("%d -> ", node->data);

 node = node->next;

 }

 printf("NULL\n");

}

// Main function to test the linked list operations

int main() {

 struct Node* head = NULL; // Start with an empty linked list

 // Inserting nodes into the linked list at the beginning

 insertAtBeginning(&head, 40);

 insertAtBeginning(&head, 30);

 insertAtBeginning(&head, 20);

 insertAtBeginning(&head, 10);

 // Print the linked list

 printList(head);

 // Free memory (not shown here for simplicity)

 return 0;

}

Data Structures Lab (ECS2024)

P a g e 18 | 97

Output-

Delete a node in linked list

#include <stdio.h>

#include <stdlib.h>

// Node structure for the linked list

struct Node {

 int data;

 struct Node* next;

};

// Function to delete the head node

struct Node* deleteHead(struct Node* head)

{

 // Base case if linked list is empty

 if (head == NULL)

 return NULL;

 // Store the current head in a temporary variable

 struct Node* temp = head;

 // Move the head to the next node

 head = head->next;

Data Structures Lab (ECS2024)

P a g e 19 | 97

 // Free the memory of the old head node

 free(temp);

 // Return the new head

 return head;

}

// Function to print the linked list

void printList(struct Node* head)

{

 while (head != NULL) {

 printf("%d -> ", head->data);

 head = head->next;

 }

 printf("NULL\n");

}

// Function to create a new node

struct Node* createNode(int data)

{

 struct Node* node

 = (struct Node*)malloc(sizeof(struct Node));

 node->data = data;

 node->next = NULL;

 return node;

}

int main()

{

Data Structures Lab (ECS2024)

P a g e 20 | 97

 // Creating a linked list

 // 1 -> 2 -> 3 -> 4 -> 5 -> NULL

 struct Node* head = createNode(1);

 head->next = createNode(2);

 head->next->next = createNode(3);

 head->next->next->next = createNode(4);

 head->next->next->next->next = createNode(5);

 printf("Original list: ");

 printList(head);

 // Deleting the head node

 head = deleteHead(head);

 printf("List after deleting the head: ");

 printList(head);

 return 0;

}

Output-

Conclusion:

Lists are essential data structures for storing and manipulating collections of elements.

Data Structures Lab (ECS2024)

P a g e 21 | 97

 Experiment No-3

Aim:

Write code and understand the concept, Queue in data structure

Theory:

Queue:

 - A queue can be defined as an ordered list which enables insert operations to be performed

at one end called REAR and delete operations to be performed at another end called

FRONT.

- Queue is referred to be as First In First Out list.

- For example, people waiting in line for a rail ticket form a queue.

Types of Queue-

Data Structures Lab (ECS2024)

P a g e 22 | 97

Types of Queue-

1. Simple Queue/Linear Queue

2. Circular Queue

3. Priority Queue

1. Simple Queue/Linear Queue

In Linear Queue, an insertion takes place from one end while the deletion occurs from another end.

The end at which the insertion takes place is known as the rear end, and the end at which the

deletion takes place is known as front end.

It strictly follows the FIFO rule.

The major drawback of using a linear Queue is that insertion is done only from the rear end. If the

first three elements are deleted from the Queue, we cannot insert more elements even though the

space is available in a Linear Queue. In this case, the linear Queue shows the overflow condition as

the rear is pointing to the last element of the Queue.

2. Circular Queue

In Circular Queue, all the nodes are represented as circular. It is similar to the linear Queue except

that the last element of the queue is connected to the first element.

It is also known as Ring Buffer, as all the ends are connected to another end.

The drawback that occurs in a linear queue is overcome by using the circular queue. If the empty

space is available in a circular queue, the new element can be added in an empty space by simply

incrementing the value of rear. The main advantage of using the circular queue is better memory

utilization

3.Priority Queue

Data Structures Lab (ECS2024)

P a g e 23 | 97

 It is a special type of queue in which each element has a priority assigned to it.

 The element with the highest priority is removed first.

 This is useful in situations where certain elements need to be processed before others

Operations on Queues:

1)Enqueue

2)Dequeue

3)QueueFull

4)QueueEmpty

1)Enqueue-

Inserts an element at the end of the queue i.e. at the rear end.

The following steps should be taken to enqueue (insert) data into a queue:

• Check if the queue is full.
• If the queue is full, return overflow error and exit.
• If the queue is not full, increment the rear pointer to point to the next empty space.
• Add the data element to the queue location, where the rear is pointing.
• return success.

Data Structures Lab (ECS2024)

P a g e 24 | 97

2)Dequeue

This operation removes and returns an element that is at the front end of the queue.

The following steps are taken to perform the dequeue operation:

• Check if the queue is empty.

• If the queue is empty, return the underflow error and exit.

• If the queue is not empty, access the data where the front is pointing.

• Increment the front pointer to point to the next available data element.

• The Return success.

3)QueueFull/ isFull()

This operation returns a boolean value that indicates whether the queue is full or not.

The following steps are taken to perform the isFull() operation:

• Check if front value is equal to zero and rear is equal to the capacity of queue if yes

then return true.

• otherwise return false

4)QueueEmpty/isEmpty()

This operation returns a Boolean value that indicates whether the queue is empty or not.

The following steps are taken to perform the Empty operation:

Data Structures Lab (ECS2024)

P a g e 25 | 97

• check if front value is equal to -1 or not, if yes then return true means queue is empty.

• Otherwise return false, means queue is not empty

Conclusion:

Queues are essential data structures for managing elements in a FIFO order.

 Sample Program

#include <stdio.h>

#include <stdlib.h>

#define MAX 5 // Maximum size of the queue

// Queue structure

struct Queue {

 int arr[MAX]; // Array to hold queue elements

 int front; // Index of the front element

 int rear; // Index of the rear element

};

// Function to initialize the queue

void initializeQueue(struct Queue* q) {

 q->front = -1;

 q->rear = -1;

}

// Check if the queue is full

int isFull(struct Queue* q) {

 return (q->rear == MAX - 1);

}

// Check if the queue is empty

int isEmpty(struct Queue* q) {

Data Structures Lab (ECS2024)

P a g e 26 | 97

 return (q->front == -1);

}

// Enqueue operation (insert an element)

void enqueue(struct Queue* q, int value) {

 if (isFull(q)) {

 printf("Queue is full. Cannot enqueue %d\n", value);

 return;

 }

 if (q->front == -1) { // First element to be inserted

 q->front = 0;

 }

 q->rear++;

 q->arr[q->rear] = value;

 printf("Enqueued %d\n", value);

}

// Dequeue operation (remove an element)

int dequeue(struct Queue* q) {

 if (isEmpty(q)) {

 printf("Queue is empty. Cannot dequeue.\n");

 return -1; // Return a sentinel value

 }

 int dequeuedValue = q->arr[q->front];

 if (q->front == q->rear) { // Only one element left

 q->front = -1;

 q->rear = -1;

 } else {

Data Structures Lab (ECS2024)

P a g e 27 | 97

 q->front++;

 }

 return dequeuedValue;

}

// Display the elements of the queue

void display(struct Queue* q) {

 if (isEmpty(q)) {

 printf("Queue is empty.\n");

 return;

 }

 printf("Queue elements: ");

 for (int i = q->front; i <= q->rear; i++) {

 printf("%d ", q->arr[i]);

 }

 printf("\n");

}

int main() {

 struct Queue q;

 initializeQueue(&q);

 // Enqueue some elements

 enqueue(&q, 10);

 enqueue(&q, 20);

 enqueue(&q, 30);

 enqueue(&q, 40);

 enqueue(&q, 50);

Data Structures Lab (ECS2024)

P a g e 28 | 97

 // Try to enqueue when the queue is full

 enqueue(&q, 60);

 // Display queue

 display(&q);

 // Dequeue some elements

 printf("Dequeued %d\n", dequeue(&q));

 printf("Dequeued %d\n", dequeue(&q));

 // Display queue after dequeuing

 display(&q);

 // Enqueue more elements

 enqueue(&q, 60);

 enqueue(&q, 70);

 // Display queue after enqueuing

 display(&q);

 return 0;

}

Output-

Data Structures Lab (ECS2024)

P a g e 29 | 97

Data Structures Lab (ECS2024)

P a g e 30 | 97

 Experiment No-4

Aim:

Write code and understand the concept Array in data Structure

Theory:

 Array: An array is a collection of elements of the same data type stored in contiguous

memory locations.

 It is one of the simplest data structures where each data element can be randomly accessed

by using its index number.

 Each element in an array is of the same data type and carries the same size that is 4 bytes.

 Elements in the array are stored at contiguous memory locations from which the first

element is stored at the smallest memory location.

 Elements of the array can be randomly accessed since we can calculate the address of each

element of the array with the given base address and the size of the data element.

We can define the indexing of an array in the below ways -

1. 0 (zero-based indexing): The first element of the array will be arr[0].

2. 1 (one-based indexing): The first element of the array will be arr[1].

3. n (n - based indexing): The first element of the array can reside at any random index

number.

In the above image, we have shown the memory allocation of an array arr of size 5. The array

follows a 0-based indexing approach. The base address of the array is 100 bytes. It is the

Data Structures Lab (ECS2024)

P a g e 31 | 97

address of arr[0]. Here, the size of the data type used is 4 bytes; therefore, each element will

take 4 bytes in the memory.

Representation of an array

As per the above illustration, there are some of the following important points -

• Index starts with 0.

• The array's length is 10, which means we can store 10 elements.

• Each element in the array can be accessed via its index.

Syntax of Array-

datatype Array_Name[size] = { value1, value2, value3, ….. valueN };

Properties of array

There are some of the properties of an array that are listed as follows -

• Each element in an array is of the same data type and carries the same size that is 4

bytes.

• Elements in the array are stored at contiguous memory locations from which the first

element is stored at the smallest memory location.

• Elements of the array can be randomly accessed since we can calculate the address of

each element of the array with the given base address and the size of the data element.

Data Structures Lab (ECS2024)

P a g e 32 | 97

Advantages of Array

• Array provides the single name for the group of variables of the same type. Therefore,

it is easy to remember the name of all the elements of an array.

• Traversing an array is a very simple process; we just need to increment the base

address of the array in order to visit each element one by one.

• Any element in the array can be directly accessed by using the index.

Disadvantages of Array

• Array is homogenous. It means that the elements with similar data type can be stored

in it.

• In array, there is static memory allocation that is size of an array cannot be altered.

• There will be wastage of memory if we store less number of elements than the

declared size.

Operations on Arrays:

1.Insertion.

2.Traversal

3. Search.

4.Delete

1)Insertion Operation

In the insertion operation, we are adding one or more elements to the array. Based on the

requirement, a new element can be added at the beginning, end, or any given index of

array.

This is done using input statements of the programming languages.

Algorithm

Following is an algorithm to insert elements into a Linear Array until we reach the end of the

array −

Data Structures Lab (ECS2024)

P a g e 33 | 97

1. Start

2. Create an Array of a desired datatype and size.

3. Initialize a variable 'i' as 0.

4. Enter the element at ith index of the array.

5. Increment i by 1.

6. Repeat Steps 4 & 5 until the end of the array.

7. Stop

2)Traversal Operation

This operation traverses through all the elements of an array. We use loop statements to carry

this out.

Algorithm

Following is the algorithm to traverse through all the elements present in a Linear Array −

1 Start

2. Initialize an Array of certain size and datatype.

3. Initialize another variable ‘i’ with 0.

4. Print the I th value in the array and increment i.

5. Repeat Step 4 until the end of the array is reached.

6. End

3)Search Operation

Searching an element in the array using a key; The key element sequentially compares every

value in the array to check if the key is present in the array or not.

Algorithm

Consider LA is a linear array with N elements and K is a positive integer such that K<=N.

Following is the algorithm to find an element with a value of ITEM using sequential search.

1. Start

2. Set J = 0

3. Repeat steps 4 and 5 while J < N

4. IF LA[J] is equal ITEM THEN GOTO STEP 6

5. Set J = J +1

6. PRINT J, ITEM

7. Stop

Data Structures Lab (ECS2024)

P a g e 34 | 97

4)Deletion Operation-

In this array operation, we delete an element from the particular index of an array. This

deletion operation takes place as we assign the value in the consequent index to the current

index.

Algorithm

Consider LA is a linear array with N elements and K is a positive integer such that K<=N.

Following is the algorithm to delete an element available at the Kth position of LA.

1.Start

2. Set J = K

3. Repeat steps 4 and 5 while J < N

4. Set LA[J] = LA[J + 1]

5. Set J = J+1

6. Set N = N-1

7. Stop

Conclusion:

- Arrays have homogeneous elements and fixed sizes.

- Elements are accessed using indexes.

- Operations include traversal, insertion, deletion, search, and sorting.

Sample Program

#include <stdio.h>

void insert(int arr[], int *n, int pos, int value);

void traverse(int arr[], int n);

int search(int arr[], int n, int value);

void delete(int arr[], int *n, int pos);

int main() {

 int arr[100] = {1, 2, 3, 4, 5};

 int n = 5; // current number of elements

Data Structures Lab (ECS2024)

P a g e 35 | 97

 printf("Original array: ");

 traverse(arr, n);

 printf("\n");

 // Insertion

 insert(arr, &n, 2, 10);

 printf("After insertion: ");

 traverse(arr, n);

 printf("\n");

 // Searching

 int index = search(arr, n, 10);

 if (index != -1) {

 printf("Element 10 found at index: %d\n", index);

 } else {

 printf("Element 10 not found\n");

 }

 // Deletion

 delete(arr, &n, 2);

 printf("After deletion: ");

 traverse(arr, n);

 printf("\n");

 return 0;

}

void insert(int arr[], int *n, int pos, int value) {

 for (int i = *n; i > pos; i--) {

Data Structures Lab (ECS2024)

P a g e 36 | 97

 arr[i] = arr[i - 1];

 }

 arr[pos] = value;

 (*n)++;

}

void traverse(int arr[], int n) {

 for (int i = 0; i < n; i++) {

 printf("%d ", arr[i]);

 }

}

int search(int arr[], int n, int value) {

 for (int i = 0; i < n; i++) {

 if (arr[i] == value) {

 return i; // return index if found

 }

 }

 return -1; // return -1 if not found

}

void delete(int arr[], int *n, int pos) {

 for (int i = pos; i < *n - 1; i++) {

 arr[i] = arr[i + 1];

 }

 (*n)--; // decrease the size

}

Data Structures Lab (ECS2024)

P a g e 37 | 97

Output-

Data Structures Lab (ECS2024)

P a g e 38 | 97

Experiment No-5

Aim:

Write code and understand the concept Graphs, Trees in data Structure

Theory:

Graphs

Graph Data Structure is a non-linear data structure

A graph G can be defined as an ordered set G (V, E) where V(G) represents the set of vertices

and E(G) represents the set of edges which are used to connect these vertices.

A graph can be defined as group of vertices and edges that are used to connect these

vertices.

 A graph can be seen as a cyclic tree, where the vertices (Nodes) maintain any complex

relationship among them instead of having parent child relationship.

Graph Data Structure is a collection of nodes connected by edges.

 It's used to represent relationships between different entities.

 Graph algorithms are methods used to manipulate and analyse graphs, solving various

problems like finding the shortest path or detecting cycles.

It is useful in fields such as social network analysis, recommendation systems, and

computer networks. In the field of sports data science, graph data structure can be used to

analyse and understand the dynamics of team performance and player interactions on the

field.

https://www.geeksforgeeks.org/introduction-to-hierarchical-data-structure

Data Structures Lab (ECS2024)

P a g e 39 | 97

Types of Graphs:

 1. Directed Graph

 2.UnDirected Graph

3. Weighted Graph

4. Unweighted Graph

5.Cyclic Graph

6. Acyclic Graph

7.Connected Graph

8.Disconnected Graph

9. Complete Graph

10. Subgraph

1. Directed Graph-

 Another name for the directed graphs is digraphs.

A graph is called a directed graph or digraph if all the edges present between any vertices

or nodes of the graph are directed or have a defined direction.

By directed edges, we mean the edges of the graph that have a direction to determine from

which node it is starting and at which node it is ending.

All the edges for a graph need to be directed to call it a directed graph or digraph.

 All the edges of a directed graph or digraph have a direction that will start from one vertex

and end at another.

Data Structures Lab (ECS2024)

P a g e 40 | 97

2.Undirected graph:

An undirected graph is a fundamental structure in graph theory, consisting of a set of vertices

(or nodes) connected by edges. Unlike directed graphs, where edges have a direction (from

one vertex to another),

 In undirected graphs, the edges do not have any orientation.

This means that an edge between two vertices indicates a bidirectional relationship.

an undirected graph, edges do not have a direction. They simply connect two nodes without

any particular order.

3. Weighted Graph:

A graph in which edges have weights or costs associated with them. Example: A road

network graph where the weights can represent the distance between two cities.

weighted graph is a type of graph in which each edge has a numerical value, called a weight.

These weights can represent various quantities, such as distances, costs, or any metric that

quantifies the relationship between the vertices (nodes) connected by the edges.

Weighted graphs are widely used in various fields, including:

• Network routing: To find the shortest path in telecommunications.

• Transportation: To optimize routes based on distance or time.

• Game development: To manage costs in pathfinding algorithms

Data Structures Lab (ECS2024)

P a g e 41 | 97

 4.Unweighted Graph-

-An unweighted graph is a graph in which the edges do not have weights or costs associated

with them. Instead, they simply represent the presence of a connection between two vertices.

-Unweighted graphs are used to represent data that are not related in terms of magnitude.

 - Unweighted graphs are used to represent computation flow.

 - Representation of image segmentation, where pixels are represented as nodes and edges

represent adjacency relationships.

 -Representation of state spaces in decision-making processes and problem-solving in AI.

 - Representation of information networks, such as the World Wide Web.

Unweighted graphs can be used to solve puzzles.

-It can be used to represent a circuit diagram.

-It can be used in social media sites to find whether two users are connected or not.

 -It is used in Hamiltonian graphs which have many practical applications like genome mapping

to combine many tiny fragments of genetic code.

 -Used in computer networks as it represents the connections between computers in a network

as an unweighted graph.

Data Structures Lab (ECS2024)

P a g e 42 | 97

5.Cyclic Graph

A cyclic graph is defined as a graph that contains at least one cycle which is a path that begins

and ends at the same node, without passing through any other node twice.

Formally, a cyclic graph is defined as a graph G = (V, E) that contains at least one cycle, where

V is the set of vertices (nodes) and E is the set of edges (links) that connect them.

 A cyclic graph contains one or more cycles or closed paths, which means that you can traverse

the graph and end up where you started.

 A cyclic graph can be either directed or undirected. In a directed cyclic graph, the edges have

a direction, and the cycle must follow the direction of the edges. In an undirected cyclic graph,

the edges have no direction, and the cycle can go in any direction.

 A cyclic graph may have multiple cycles of different lengths and shapes. Some cycles may be

contained within other cycles.

A cyclic graph is bipartite if and only if all its cycles are of even length.

Note: Cyclic Graph and Cycle Graph are not the same.

https://www.geeksforgeeks.org/introduction-to-graphs-data-structure-and-algorithm-tutorials/
https://www.geeksforgeeks.org/degree-of-a-cycle-graph/

Data Structures Lab (ECS2024)

P a g e 43 | 97

6.Acyclic Graph-

A graph is called an acyclic graph if zero cycles are present, and an acyclic graph is the

complete opposite of a cyclic graph.

The graph shown in the above image is acyclic because it has zero cycles present in it. That

means if we begin traversing the graph from vertex B, then a single path doesn't exist that

will traverse all the vertices and end at the same vertex that is vertex B.

An acyclic graph is a directed graph that contains absolutely no cycle; that is, no node

can be traversed back to itself. Here, there are no paths which connect a node back to itself

in the graph.

Data Structures Lab (ECS2024)

P a g e 44 | 97

Graph Operations:

Operations of Graphs

The primary operations of a graph include creating a graph with vertices and edges, and

displaying the said graph. However, one of the most common and popular operation

performed using graphs are Traversal, i.e. visiting every vertex of the graph in a specific

order.

There are two types of traversals in Graphs −

• Depth First Search Traversal

• Breadth First Search Traversal

Depth First Search Traversal

Depth First Search is a traversal algorithm that visits all the vertices of a graph in the

decreasing order of its depth. In this algorithm, an arbitrary node is chosen as the starting

point and the graph is traversed back and forth by marking unvisited adjacent nodes until all

the vertices are marked.

The DFS traversal uses the stack data structure to keep track of the unvisited nodes.

Breadth First Search Traversal

Breadth First Search is a traversal algorithm that visits all the vertices of a graph present at

one level of the depth before moving to the next level of depth. In this algorithm, an arbitrary

node is chosen as the starting point and the graph is traversed by visiting the adjacent vertices

on the same depth level and marking them until there is no vertex left.

The DFS traversal uses the queue data structure to keep track of the unvisited nodes.

Tree-

Tree data structure is a hierarchical structure that is used to represent and organize data in a

way that is easy to navigate and search.

It is a collection of nodes that are connected by edges and has a hierarchical relationship

between the nodes.

The topmost node of the tree is called the root, and the nodes below it are called the child

nodes. Each node can have multiple child nodes, and these child nodes can also have their

own child nodes, forming a recursive structure.

https://www.tutorialspoint.com/data_structures_algorithms/depth_first_traversal.htm
https://www.tutorialspoint.com/data_structures_algorithms/breadth_first_traversal.htm

Data Structures Lab (ECS2024)

P a g e 45 | 97

Basic Terminologies in Tree Data Structure:

• Parent Node: The node which is an immediate predecessor of a node is called the parent

node of that node. {B} is the parent node of {D, E}.

• Child Node: The node which is the immediate successor of a node is called the child

node of that node. Examples: {D, E} are the child nodes of {B}.

• Root Node: The topmost node of a tree or the node which does not have any parent

node is called the root node. {A} is the root node of the tree. A non-empty tree must

contain exactly one root node and exactly one path from the root to all other nodes of

the tree.

• Leaf Node or External Node: The nodes which do not have any child nodes are called

leaf nodes. {I, J, K, F, G, H} are the leaf nodes of the tree.

• Ancestor of a Node: Any predecessor nodes on the path of the root to that node are

called Ancestors of that node. {A,B} are the ancestor nodes of the node {E}

• Descendant: A node x is a descendant of another node y if and only if y is an ancestor

of x.

• Sibling: Children of the same parent node are called siblings. {D,E} are called siblings.

• Level of a node: The count of edges on the path from the root node to that node. The

root node has level 0.

• Internal node: A node with at least one child is called Internal Node.

• Neighbour of a Node: Parent or child nodes of that node are called neighbours of that

node.

• Subtree: Any node of the tree along with its descendant.

Data Structures Lab (ECS2024)

P a g e 46 | 97

Types of Trees

1)Binary tree:

In a binary tree, each node can have a maximum of two children linked to it.

 Some common types of binary trees include full binary trees, complete binary trees, balanced

binary trees, and degenerate or pathological binary trees.

A Binary Tree Data Structure is a hierarchical data structure in which each node has at most two

children, referred to as the left child and the right child. It is commonly used in computer science

for efficient storage and retrieval of data, with various operations such as insertion, deletion, and

traversal.

Examples of Binary Tree are Binary Search Tree and Binary Heap.

2)Ternary Tree

A Ternary Tree is a type of tree data structure where each node can have up to three child

nodes.

 This is different from a binary tree, where each node can have at most two child nodes.

https://www.geeksforgeeks.org/types-of-trees-in-data-structures

Data Structures Lab (ECS2024)

P a g e 47 | 97

In a ternary tree, the first child node is called the "left" child, the second child node is called

the "middle" child, and the third child node is called the "right" child.

 A Ternary Tree is a special type of tree data structure. Unlike a regular binary tree where

each node can have up to two child nodes. The Experiment explains the basic structure and

properties of ternary trees, such as the number of possible children per node, tree height, and

node depth.

 It also discusses why ternary trees can be useful, highlighting applications in areas like string

searching and database indexing. It also introduces some common problems and algorithms

related to ternary trees.

Basic Structure of a Ternary Tree

In a ternary tree:

• Each node has three possible children: a left child, a middle child, and a right child.

• The nodes are connected by edges that represent the parent-child relationships.

Here's a simple visualization of a ternary tree:

3)Generic Trees (N-ary Trees)-

Generic trees are a collection of nodes where each node is a data structure that consists of

records and a list of references to its children(duplicate references are not allowed).

Unlike the linked list, each node stores the address of multiple nodes.

Every node stores address of its children and the very first node’s address will be stored in a

separate pointer called root.

The Generic trees are the N-ary trees which have the following properties:

Data Structures Lab (ECS2024)

P a g e 48 | 97

 1. Many children at every node.

 2. The number of nodes for each node is not known in advance.

To represent the above tree, we have to consider the worst case, that is the node with

maximum children (in above example, 6 children) and allocate that many pointers for each

node.

Conclusion:

- Graphs represent relationships between nodes.

- Trees represent hierarchical relationships.

Sample Program-(Graph)

#include <stdio.h>

#include <stdlib.h>

// Structure to represent a node in the adjacency list

struct Node {

 int dest;

 struct Node* next;

};

// Structure to represent the graph

struct Graph {

Data Structures Lab (ECS2024)

P a g e 49 | 97

 int V; // Number of vertices

 struct Node** adjList; // Array of adjacency lists

};

// Function to create a new adjacency list node

struct Node* createNode(int dest) {

 struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));

 newNode->dest = dest;

 newNode->next = NULL;

 return newNode;

}

// Function to create a graph

struct Graph* createGraph(int V) {

 struct Graph* graph = (struct Graph*)malloc(sizeof(struct Graph));

 graph->V = V;

 graph->adjList = (struct Node**)malloc(V * sizeof(struct Node*));

 for (int i = 0; i < V; i++) {

 graph->adjList[i] = NULL;

 }

 return graph;

}

// Function to add an edge to the graph

void addEdge(struct Graph* graph, int src, int dest) {

 // Add edge from src to dest

 struct Node* newNode = createNode(dest);

Data Structures Lab (ECS2024)

P a g e 50 | 97

 newNode->next = graph->adjList[src];

 graph->adjList[src] = newNode;

 // For undirected graph, add edge from dest to src

 newNode = createNode(src);

 newNode->next = graph->adjList[dest];

 graph->adjList[dest] = newNode;

}

// Function to print the graph

void printGraph(struct Graph* graph) {

 for (int v = 0; v < graph->V; v++) {

 struct Node* temp = graph->adjList[v];

 printf("\n Adjacency list of vertex %d\n head ", v);

 while (temp) {

 printf("-> %d", temp->dest);

 temp = temp->next;

 }

 printf("\n");

 }

}

// Main function to test the implementation

int main() {

 int V = 5; // Number of vertices

 struct Graph* graph = createGraph(V);

 addEdge(graph, 0, 1);

 addEdge(graph, 0, 4);

 addEdge(graph, 1, 2);

Data Structures Lab (ECS2024)

P a g e 51 | 97

 addEdge(graph, 1, 3);

 addEdge(graph, 1, 4);

 addEdge(graph, 2, 3);

 addEdge(graph, 3, 4);

 printGraph(graph);

 return 0;

}

Output-

Sample Program (Tree)

#include <stdio.h>

#include <stdlib.h>

// Structure to represent a node in the binary tree

struct Node {

 int data;

 struct Node* left;

Data Structures Lab (ECS2024)

P a g e 52 | 97

 struct Node* right;

};

// Function to create a new node

struct Node* createNode(int data) {

 struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));

 newNode->data = data;

 newNode->left = NULL;

 newNode->right = NULL;

 return newNode;

}

// Function to print the tree in preorder traversal

void preorderTraversal(struct Node* root) {

 if (root != NULL) {

 printf("%d ", root->data);

 preorderTraversal(root->left);

 preorderTraversal(root->right);

 }

}

// Main function to test the implementation

int main() {

 // Creating a simple binary tree

 struct Node* root = createNode(1);

 root->left = createNode(2);

 root->right = createNode(3);

 root->left->left = createNode(4);

 root->left->right = createNode(5);

Data Structures Lab (ECS2024)

P a g e 53 | 97

 printf("Preorder traversal of the binary tree is:\n");

 preorderTraversal(root);

 return 0;

}

Output

Data Structures Lab (ECS2024)

P a g e 54 | 97

Experiment No-6

Aim:

Write code and understand the concept Hashing, Hast Tables in data Structure.

Theory:

Hashing:

Hashing is a popular technique in computer science that involves mapping large data sets to

fixed-length values.

 It is a process of converting a data set of variable size into a data set of a fixed size.

 The ability to perform efficient lookup operations makes hashing an essential concept in

data structures.

A hashing algorithm is used to convert an input (such as a string or integer) into a fixed-size

output (referred to as a hash code or hash value). The data is then stored and retrieved using

this hash value as an index in an array or hash table. The hash function must be deterministic,

which guarantees that it will always yield the same result for a given input.

Hashing is commonly used to create a unique identifier for a piece of data, which can be

used to quickly look up that data in a large dataset. For example, a web browser may use

hashing to store website passwords securely. When a user enters their password, the browser

converts it into a hash value and compares it to the stored hash value to authenticate the user.

Applications of Hashing

1. Hashing provides constant time search, insert and delete operations on average. This is why

hashing is one of the most used data structure, example problems are, distinct elements,

counting frequencies of items, finding duplicates, etc.

2. Database indexing: Hashing is used to index and retrieve data efficiently in databases and

other data storage systems.

3. Dictionaries: To implement a dictionary so that we can quickly search a word

https://www.geeksforgeeks.org/print-distinct-elements-given-integer-array/

Data Structures Lab (ECS2024)

P a g e 55 | 97

4. Password storage: Hashing is used to store passwords securely by applying a hash function

to the password and storing the hashed result, rather than the plain text password.

5. Network Routing: Determining the best path for data packets

6. Bloom Filters : Bloom filter is a space optimized and probabilistic version of hashing and

has huge applications like spam filtering, recommendations.

7. Cryptography: Hashing is used in cryptography to generate digital signatures, message

authentication codes (MACs), and key derivation functions.

8. Load balancing: Hashing is used in load-balancing algorithms, such as consistent hashing,

to distribute requests to servers in a network.

9. Blockchain: Hashing is used in blockchain technology, such as the proof-of-work algorithm,

to secure the integrity and consensus of the blockchain.

10. Image processing: Hashing is used in image processing applications, such as perceptual

hashing, to detect and prevent image duplicates and modifications.

Hash Table:

A hash table is a data structure that stores key-value pairs.

A Hash table is defined as a data structure used to insert, look up, and remove key-value

pairs quickly. It operates on the hashing concept, where each key is translated by a hash

function into a distinct index in an array.

The index functions as a storage location for the matching value. In simple words, it maps

the keys with the value

https://www.geeksforgeeks.org/bloom-filters-introduction-and-python-implementation/
https://www.geeksforgeeks.org/what-is-hashing/

Data Structures Lab (ECS2024)

P a g e 56 | 97

What is Load factor?

A hash table’s load factor is determined by how many elements are kept there in relation to

how big the table is. The table may be cluttered and have longer search times and collisions

if the load factor is high. An ideal load factor can be maintained with the use of a good hash

function and proper table resizing.

Hash Function:

A hash function generates an index from a key.

A Function that translates keys to array indices is known as a hash function. The keys should

be evenly distributed across the array via a decent hash function to reduce collisions and

ensure quick lookup speeds.

• Integer universe assumption: The keys are assumed to be integers within a certain

range according to the integer universe assumption. This enables the use of basic

hashing operations like division or multiplication hashing.

• Hashing by division: This straightforward hashing technique uses the key’s remaining

value after dividing it by the array’s size as the index. When an array size is a prime

number and the keys are evenly spaced out, it performs well.

• Hashing by multiplication: This straightforward hashing operation multiplies the key

by a constant between 0 and 1 before taking the fractional portion of the outcome. After

that, the index is determined by multiplying the fractional component by the array’s

size. Also, it functions effectively when the keys are scattered equally.

Choosing a hash function:

Selecting a decent hash function is based on the properties of the keys and the intended

functionality of the hash table. Using a function that evenly distributes the keys and reduces

collisions is crucial.

Criteria based on which a hash function is chosen:

• To ensure that the number of collisions is kept to a minimum, a good hash function

should distribute the keys throughout the hash table in a uniform manner. This implies

that for all pairings of keys, the likelihood of two keys hashing to the same position in

the table should be rather constant.

• To enable speedy hashing and key retrieval, the hash function should be

computationally efficient.

• It ought to be challenging to deduce the key from its hash value. As a result, attempts to

guess the key using the hash value are less likely to succeed.

https://www.geeksforgeeks.org/what-are-hash-functions-and-how-to-choose-a-good-hash-function/

Data Structures Lab (ECS2024)

P a g e 57 | 97

• A hash function should be flexible enough to adjust as the data being hashed changes.

For instance, the hash function needs to continue to perform properly if the keys being

hashed change in size or format.

Collision resolution techniques:

Collisions happen when two or more keys point to the same array index. Chaining, open

addressing, and double hashing are a few techniques for resolving collisions.

• Open addressing: collisions are handled by looking for the following empty space in

the table. If the first slot is already taken, the hash function is applied to the subsequent

slots until one is left empty. There are various ways to use this approach, including

double hashing, linear probing, and quadratic probing.

• Separate Chaining: In separate chaining, a linked list of objects that hash to each slot

in the hash table is present. Two keys are included in the linked list if they hash to the

same slot. This method is rather simple to use and can manage several collisions.

• Robin Hood hashing: To reduce the length of the chain, collisions in Robin Hood

hashing are addressed by switching off keys. The algorithm compares the distance

between the slot and the occupied slot of the two keys if a new key hashes to an already-

occupied slot. The existing key gets swapped out with the new one if it is closer to its

ideal slot. This brings the existing key closer to its ideal slot. This method has a tendency

to cut down on collisions and average chain length.

Dynamic resizing:

This feature enables the hash table to expand or contract in response to changes in the number

of elements contained in the table. This promotes a load factor that is ideal and quick lookup

times.

https://www.geeksforgeeks.org/collision-resolution-techniques/
https://www.geeksforgeeks.org/open-addressing-collision-handling-technique-in-hashing/
https://www.geeksforgeeks.org/separate-chaining-collision-handling-technique-in-hashing/

Data Structures Lab (ECS2024)

P a g e 58 | 97

Types of Hash Functions

1. Division Method.

2. Multiplication Method

3. Mid-Square Method

4. Folding Method

5. Cryptographic Hash Functions

6. Universal Hashing

7. Perfect Hashing

1. Division Method

The division method involves dividing the key by a prime number and using the remainder

as the hash value.

h(k)=k mod m

Where k is the key and 𝑚m is a prime number.

Advantages:

• Simple to implement.

• Works well when 𝑚m is a prime number.

Disadvantages:

• Poor distribution if 𝑚m is not chosen wisely.

2.Multiplication Method

In the multiplication method, a constant 𝐴A (0 < A < 1) is used to multiply the key. The

fractional part of the product is then multiplied by 𝑚m to get the hash value.

h(k)=⌊m(kAmod1)⌋

Where ⌊ ⌋ denotes the floor function.

Advantages:

• Less sensitive to the choice of 𝑚m.

Disadvantages:

• More complex than the division method.

3. Mid-Square Method

Data Structures Lab (ECS2024)

P a g e 59 | 97

In the mid-square method, the key is squared, and the middle digits of the result are taken as

the hash value.

Steps:

1. Square the key.

2. Extract the middle digits of the squared value.

Advantages:

• Produces a good distribution of hash values.

Disadvantages:

• May require more computational effort.

4. Folding Method

The folding method involves dividing the key into equal parts, summing the parts, and then

taking the modulo with respect to 𝑚m.

Steps:

1. Divide the key into parts.

2. Sum the parts.

3. Take the modulo 𝑚m of the sum.

Advantages:

• Simple and easy to implement.

Disadvantages:

• Depends on the choice of partitioning scheme.

Operations on Hash Tables:

1. Insertion (adding key-value pairs)

2. Deletion (removing key-value pairs)

3. Search (finding a key-value pair)

Data Structures Lab (ECS2024)

P a g e 60 | 97

1. Insertion

• Operation: Add a key-value pair to the hash table.

• Process:

o Compute the hash code of the key using a hash function.

o Map the hash code to an index in the underlying array.

o Insert the key-value pair at that index.

o Handle collisions using techniques like chaining (linked lists) or open

addressing (probing).

2. Searching

• Operation: Retrieve the value associated with a given key.

• Process:

o Compute the hash code of the key.

o Map the hash code to an index in the array.

o Check that index for the key. In case of collisions, search through the entries at

that index depending on the collision resolution method used.

3. Deletion

• Operation: Remove a key-value pair from the hash table.

• Process:

o Compute the hash code of the key to find the index.

o Check the entry at that index for the key.

o If the key is found, remove the associated value. Again, handle chains or probing

accordingly.

Conclusion:

- Hashing maps keys to indices.

- Hash tables store key-value pairs.

- Hash functions generate indices.

Data Structures Lab (ECS2024)

P a g e 61 | 97

Sample Program

 #include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define TABLE_SIZE 10

// Node structure for chaining

typedef struct Node {

 char *key;

 int value;

 struct Node *next;

} Node;

// Hash table structure

typedef struct HashTable {

 Node **table;

} HashTable;

// Hash function

unsigned int hash_function(const char *key) {

 unsigned int hash = 0;

 while (*key) {

 hash = (hash << 5) + *key; // shift left 5 bits and add the current character

 key++;

 }

 return hash % TABLE_SIZE; // Return a value in the size of the table

}

// Create a new hash table

Data Structures Lab (ECS2024)

P a g e 62 | 97

HashTable* create_table() {

 HashTable *hashtable = malloc(sizeof(HashTable));

 hashtable->table = malloc(TABLE_SIZE * sizeof(Node*));

 for (int i = 0; i < TABLE_SIZE; i++) {

 hashtable->table[i] = NULL;

 }

 return hashtable;

}

// Create a new node

Node* create_node(const char *key, int value) {

 Node *new_node = malloc(sizeof(Node));

 new_node->key = strdup(key);

 new_node->value = value;

 new_node->next = NULL;

 return new_node;

}

// Insert a key-value pair into the hash table

void insert(HashTable *hashtable, const char *key, int value) {

 unsigned int index = hash_function(key);

 Node *new_node = create_node(key, value);

 if (hashtable->table[index] == NULL) {

 hashtable->table[index] = new_node;

 } else {

 Node *current = hashtable->table[index];

 while (current->next != NULL) {

 if (strcmp(current->key, key) == 0) {

 current->value = value; // Update if key already exists

Data Structures Lab (ECS2024)

P a g e 63 | 97

 free(new_node->key);

 free(new_node);

 return;

 }

 current = current->next;

 }

 current->next = new_node; // Insert at end of linked list

 }

}

// Search for a key in the hash table

int search(HashTable *hashtable, const char *key) {

 unsigned int index = hash_function(key);

 Node *current = hashtable->table[index];

 while (current != NULL) {

 if (strcmp(current->key, key) == 0) {

 return current->value; // Return value if key found

 }

 current = current->next;

 }

 return -1; // Return -1 if key not found

}

// Delete a key from the hash table

void delete(HashTable *hashtable, const char *key) {

 unsigned int index = hash_function(key);

 Node *current = hashtable->table[index];

 Node *prev = NULL;

Data Structures Lab (ECS2024)

P a g e 64 | 97

 while (current != NULL) {

 if (strcmp(current->key, key) == 0) {

 if (prev == NULL) {

 hashtable->table[index] = current->next; // Remove the first node

 } else {

 prev->next = current->next; // Bypass the current node

 }

 free(current->key);

 free(current);

 return;

 }

 prev = current;

 current = current->next;

 }

}

// Free the hash table

void free_table(HashTable *hashtable) {

 for (int i = 0; i < TABLE_SIZE; i++) {

 Node *current = hashtable->table[i];

 while (current != NULL) {

 Node *temp = current;

 current = current->next;

 free(temp->key);

 free(temp);

 }

 }

 free(hashtable->table);

 free(hashtable);

Data Structures Lab (ECS2024)

P a g e 65 | 97

}

// Main function to demonstrate the hash table

int main() {

 HashTable *hashtable = create_table();

 insert(hashtable, "key1", 1);

 insert(hashtable, "key2", 2);

 insert(hashtable, "key3", 3);

 insert(hashtable, "key4", 4);

 printf("Value for 'key1': %d\n", search(hashtable, "key1"));

 printf("Value for 'key2': %d\n", search(hashtable, "key2"));

 printf("Value for 'key5': %d\n", search(hashtable, "key5")); // Key not found

 delete(hashtable, "key2");

 printf("Value for 'key2' after deletion: %d\n", search(hashtable, "key2"));

 free_table(hashtable);

 return 0;

}

Output-

Data Structures Lab (ECS2024)

P a g e 66 | 97

Experiment No-7

Aim:

Write code and understand the concept Search Algorithms (Linear Search, Binary Search.)

Theory:

Search Algorithm-

Searching algorithms are essential tools in computer science used to locate specific items

within a collection of data.

This collection of data can take various forms, such as arrays, lists, trees, or other structured

representations.

These algorithms are designed to efficiently navigate through data structures to find the

desired information, making them fundamental in various applications such as databases,

web search engines, and more.

The primary objective of searching is to determine whether the desired element exists within

the data, and if so, to identify its precise location or retrieve it.

It plays an important role in various computational tasks and real-world applications,

including information retrieval, data analysis, decision-making processes, and more.

Importance of Searching in DS

• Efficiency: Efficient searching algorithms improve program performance.

• Data Retrieval: Quickly find and retrieve specific data from large datasets.

• Database Systems: Enables fast querying of databases.

• Problem Solving: Used in a wide range of problem-solving tasks.

Applications of Searching:

Searching algorithms have numerous applications across various fields. Here are some common

applications:

• Information Retrieval: Search engines like Google, Bing, and Yahoo use sophisticated

searching algorithms to retrieve relevant information from vast amounts of data on the

web.

• Database Systems: Searching is fundamental in database systems for retrieving

specific data records based on user queries, improving efficiency in data retrieval.

• E-commerce: Searching is crucial in e-commerce platforms for users to find products

quickly based on their preferences, specifications, or keywords.

Data Structures Lab (ECS2024)

P a g e 67 | 97

• Networking: In networking, searching algorithms are used for routing packets

efficiently through networks, finding optimal paths, and managing network resources.

• Artificial Intelligence: Searching algorithms play a vital role in AI applications, such

as problem-solving, game playing (e.g., chess), and decision-making processes

• Pattern Recognition: Searching algorithms are used in pattern matching tasks, such as

image recognition, speech recognition, and handwriting recognition.

Characteristics of Searching

Understanding the characteristics of searching in data structures and algorithms is crucial for

designing efficient algorithms and making informed decisions about which searching technique

to employ. Here, we explore key aspects and characteristics associated with searching:

1. Target Element:

In searching, there is always a specific target element or item that you want to find within the

data collection. This target could be a value, a record, a key, or any other data entity of interest.

2. Search Space:

The search space refers to the entire collection of data within which you are looking for the

target element. Depending on the data structure used, the search space may vary in size and

organization.

3. Complexity:

Searching can have different levels of complexity depending on the data structure and the

algorithm used. The complexity is often measured in terms of time and space requirements.

4. Deterministic vs non-deterministic:

Some searching algorithms, like binary search, are deterministic, meaning they follow a clear

and systematic approach. Others, such as linear search, are non-deterministic, as they may need

to examine the entire search space in the worst case.

Below are some searching algorithms:

1. Linear Search

2. Binary Search

3. Ternary Search

4. Jump Search

5. Interpolation Search

6. Fibonacci Search

7. Exponential Search

https://www.geeksforgeeks.org/binary-search/

Data Structures Lab (ECS2024)

P a g e 68 | 97

1)Linear Search

Linear search is a simple search algorithm that checks each element in a list until it finds the

target value.

Linear Search, also known as Sequential Search, is one of the simplest and most

straightforward searching algorithms. It works by sequentially examining each element in a

collection of data(array or list) until a match is found or the entire collection has been

traversed.

Algorithm of Linear Search:

• The Algorithm examines each element, one by one, in the collection, treating each

element as a potential match for the key you’re searching for.

• If it finds any element that is exactly the same as the key you’re looking for, the search

is successful, and it returns the index of key.

• If it goes through all the elements and none of them matches the key, then that means

“No match is Found”.

Illustration of Linear Search:

Consider the array arr[] = {10, 50, 30, 70, 80, 20, 90, 40} and key = 30

Start from the first element (index 0) and compare key with each element (arr[i]). Comparing

key with first element arr[0]. Since not equal, the iterator moves to the next element as a

potential match.

Data Structures Lab (ECS2024)

P a g e 69 | 97

Comparing key with next element arr[1]. Since not equal, the iterator moves to the next

element as a potential match.

Data Structures Lab (ECS2024)

P a g e 70 | 97

Pseudo Code for Linear Search:

Linear Search (collection, key):

for each element in collection:

if element is equal to key:

return the index of the element

return “Not found”

Complexity Analysis of Linear Search:

• Time Complexity:

o Best Case: In the best case, the key might be present at the first index. So the

best case complexity is O(1)

o Worst Case: In the worst case, the key might be present at the last index i.e.,

opposite to the end from which the search has started in the list. So the worst-

case complexity is O(N) where N is the size of the list.

o Average Case: O(N)

• Auxiliary Space: O(1) as except for the variable to iterate through the list, no other

variable is used.

When to use Linear Search:

• When there is small collection of data.

• When data is unordered.

Data Structures Lab (ECS2024)

P a g e 71 | 97

2)Binary Search:

Binary Search is defined as a searching algorithm used in a sorted array by repeatedly dividing

the search interval in half. The idea of binary search is to use the information that the array is

sorted and reduce the time complexity to O(log N).

Algorithm of Binary Search:

• Divide the search space into two halves by finding the middle index “mid”.

• Compare the middle element of the search space with the key.

• If the key is found at middle element, the process is terminated.

• If the key is not found at middle element, choose which half will be used as the next

search space.

o If the key is smaller than the middle element, then the left side is used for next

search.

o If the key is larger than the middle element, then the right side is used for next

search.

• This process is continued until the key is found or the total search space is exhausted.

https://www.geeksforgeeks.org/binary-search/

Data Structures Lab (ECS2024)

P a g e 72 | 97

Illustration of Binary Search:

Consider an array arr[] = {2, 5, 8, 12, 16, 23, 38, 56, 72, 91}, and the target = 23.

• Calculate the mid and compare the mid element with the key. If the key is less than mid

element, move to left and if it is greater than the mid then move search space to the

right.

• Key (i.e., 23) is greater than current mid element (i.e., 16). The search space moves to

the right.

• Key is less than the current mid 56. The search space moves to the left.

If the key matches the value of the mid element, the element is found and stop search.

Data Structures Lab (ECS2024)

P a g e 73 | 97

Pseudo Code for Binary Search:

Below is the pseudo code for implementing binary search:

binarySearch(collection, key):

left = 0

right = length(collection) – 1

while left <= right:

mid = (left + right) // 2

if collection[mid] == key:

return mid

elif collection[mid] < key:

left = mid + 1

else:

right = mid – 1

return “Not found”

Complexity Analysis of Binary Search:

• Time Complexity:

o Best Case: O(1) – When the key is found at the middle element.

o Worst Case: O(log N) – When the key is not present, and the search space is

continuously halved.

o Average Case: O(log N)

• Auxiliary Space: O(1)

Data Structures Lab (ECS2024)

P a g e 74 | 97

When to use Binary Search:

• When the data collection is monotonic (essential condition) in nature.

• When efficiency is required, specially in case of large datasets.

Conclusion:

Search algorithms are essential in data structures.

- Linear search checks each element.

- Binary search divides the list in half.

Sample Program (Linear Search)

#include <stdio.h>

int linearSearch(int arr[], int n, int target) {

 for (int i = 0; i < n; i++) {

 if (arr[i] == target) {

 return i; // Return the index if element is found

 }

 }

 return -1; // Return -1 if element is not found

}

int main() {

 int arr[] = {10, 20, 30, 40, 50}; // Example array

 int n = sizeof(arr) / sizeof(arr[0]); // Number of elements in the array

 int target = 30; // Element to search for

 int result = linearSearch(arr, n, target);

 if (result != -1) {

 printf("Element %d found at index %d.\n", target, result);

 } else {

Data Structures Lab (ECS2024)

P a g e 75 | 97

 printf("Element %d not found in the array.\n", target);

 }

 return 0;

}

Output

 Sample Program (Binary search)

#include <stdio.h>

// Function to perform binary search

int binarySearch(int arr[], int left, int right, int target) {

 while (left <= right) {

 int mid = left + (right - left) / 2; // Calculate the middle index

 // Check if the target is at the mid position

 if (arr[mid] == target) {

 return mid; // Element found, return its index

 }

 // If the target is smaller than mid, ignore the right half

 if (arr[mid] > target) {

 right = mid - 1;

 }

Data Structures Lab (ECS2024)

P a g e 76 | 97

 // If the target is larger than mid, ignore the left half

 else {

 left = mid + 1;

 }

 }

 return -1; // Element not found

}

int main() {

 // Example sorted array

 int arr[] = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19};

 int n = sizeof(arr) / sizeof(arr[0]); // Number of elements in the array

 int target = 13; // Element to search for

 int result = binarySearch(arr, 0, n - 1, target);

 if (result != -1) {

 printf("Element %d found at index %d.\n", target, result);

 } else {

 printf("Element %d not found in the array.\n", target);

 }

 return 0;

}

Output

Data Structures Lab (ECS2024)

P a g e 77 | 97

Experiment No-8

Aim:

Write code and understand the concept Sorting Algorithms (Bubble Sort, Insertion Sort)

Theory:

Sorting Algorithms

A Sorting Algorithm is used to rearrange a given array or list of elements in an order. Sorting

is provided in library implementation of most of the programming languages

Sorting refers to rearrangement of a given array or list of elements according to a

comparison operator on the elements.

 The comparison operator is used to decide the new order of elements in the respective data

structure.

The sorting algorithm is important in Computer Science because it reduces the complexity

of a problem.

There is a wide range of applications for these algorithms, including searching algorithms,

database algorithms, divide and conquer methods, and data structure algorithms.

In the following sections, we list some important scientific applications where sorting

algorithms are used

• When you have hundreds of datasets you want to print, you might want to arrange them

in some way.

• Once we get the data sorted, we can get the k-th smallest and k-th largest item in O(1)

time.

• Searching any element in a huge data set becomes easy. We can use Binary search

method for search if we have sorted data. So, Sorting become important here.

• They can be used in software and in conceptual problems to solve more advanced

problems.

Data Structures Lab (ECS2024)

P a g e 78 | 97

Sorting Basics:

• In-place Sorting: An in-place sorting algorithm uses constant space for producing the

output (modifies the given array only. Examples: Selection Sort, Bubble Sort, Insertion

Sort and Heap Sort.

• Internal Sorting: Internal Sorting is when all the data is placed in the main

memory or internal memory. In internal sorting, the problem cannot take input

beyond allocated memory size.

• External Sorting : External Sorting is when all the data that needs to be sorted need

not to be placed in memory at a time, the sorting is called external sorting. External

Sorting is used for the massive amount of data. For example Merge sort can be used in

external sorting as the whole array does not have to be present all the time in memory,

• Stable sorting: When two same items appear in the same order in sorted data as in the

original array called stable sort. Examples: Merge Sort, Insertion Sort, Bubble Sort.

• Hybrid Sorting: A sorting algorithm is called Hybrid if it uses more than one standard

sorting algorithms to sort the array. The idea is to take advantages of multiple sorting

algorithms. For example IntroSort uses Insertions sort and Quick Sort.

Types of Sorting Techniques:

There is various sorting algorithms are used in data structures. The following two types

of sorting algorithms can be broadly classified:

1. Comparison-based: We compare the elements in a comparison-based sorting

algorithm)

2. Non-comparison-based: We do not compare the elements in a non-comparison-based

sorting algorithm)

https://www.geeksforgeeks.org/in-place-algorithm/
https://www.geeksforgeeks.org/external-sorting/
https://www.geeksforgeeks.org/stable-and-unstable-sorting-algorithms/
https://www.geeksforgeeks.org/hybrid-sorting-algorithms/
https://www.geeksforgeeks.org/introsort-cs-sorting-weapon/

Data Structures Lab (ECS2024)

P a g e 79 | 97

1)Bubble Sort

In this Experiment, we will discuss the Bubble sort Algorithm. The working procedure of

bubble sort is simplest. This article will be very helpful and interesting to students as they

might face bubble sort as a question in their examinations. So, it is important to discuss

the topic.

Bubble sort works on the repeatedly swapping of adjacent elements until they are not in

the intended order. It is called bubble sort because the movement of array elements is just

like the movement of air bubbles in the water. Bubbles in water rise up to the surface;

similarly, the array elements in bubble sort move to the end in each iteration.

Although it is simple to use, it is primarily used as an educational tool because the

performance of bubble sort is poor in the real world. It is not suitable for large data sets

Bubble short is majorly used where -

• complexity does not matter

• simple and shortcode is preferred

Data Structures Lab (ECS2024)

P a g e 80 | 97

Algorithm

In the algorithm given below, suppose arr is an array of n elements. The assumed swap function

in the algorithm will swap the values of given array elements.

1. begin BubbleSort(arr)

2. for all array elements

3. if arr[i] > arr[i+1]

4. swap(arr[i], arr[i+1])

5. end if

6. end for

7. return arr

8. end BubbleSort

Example

Now, let's see the working of Bubble sort Algorithm.

To understand the working of bubble sort algorithm, let's take an unsorted array. We are

taking a short and accurate array, as we know the complexity of bubble sort is O(n2).

Let the elements of array are -

First Pass

Sorting will start from the initial two elements. Let compare them to check which is greater.

Here, 32 is greater than 13 (32 > 13), so it is already sorted. Now, compare 32 with 26.

Here, 26 is smaller than 36. So, swapping is required. After swapping new array will look

like -

Data Structures Lab (ECS2024)

P a g e 81 | 97

Now, compare 32 and 35.

Here, 35 is greater than 32. So, there is no swapping required as they are already sorted.

Now, the comparison will be in between 35 and 10.

Here, 10 is smaller than 35 that are not sorted. So, swapping is required. Now, we reach at

the end of the array. After first pass, the array will be -

Now, move to the second iteration.

Second Pass

The same process will be followed for second iteration.

Here, 10 is smaller than 32. So, swapping is required. After swapping, the array will be -

Now, move to the third iteration.

Data Structures Lab (ECS2024)

P a g e 82 | 97

Third Pass

The same process will be followed for third iteration.

Here, 10 is smaller than 26. So, swapping is required. After swapping, the array will be -

Now, move to the fourth iteration.

Fourth Pass

Similarly, after the fourth iteration, the array will be -

Hence, there is no swapping required, so the array is completely sorted.

Bubble sort complexity:

Now, let's see the time complexity of bubble sort in the best case, average case, and worst

case. We will also see the space complexity of bubble sort.

Data Structures Lab (ECS2024)

P a g e 83 | 97

1. Time Complexity

• Best Case Complexity - It occurs when there is no sorting required, i.e. the array is

already sorted. The best-case time complexity of bubble sort is O(n).

• Average Case Complexity - It occurs when the array elements are in jumbled order

that is not properly ascending and not properly descending. The average case time

complexity of bubble sort is O(n2).

• Worst case complexity-Worst Case Complexity - It occurs when the array elements

are required to be sorted in reverse order. That means suppose you have to sort the

array elements in ascending order, but its elements are in descending order. The

worst-case time complexity of bubble sort is O(n2).

• The space complexity of bubble sort is O(1). It is because, in bubble sort, an extra

variable is required for swapping.

• The space complexity of optimized bubble sort is O(2). It is because two extra variables

are required in optimized bubble sort.

Selection sort is generally used when -

• A small array is to be sorted

• Swapping cost doesn't matter

• It is compulsory to check all elements

Now, let's see the algorithm of selection sort.

Data Structures Lab (ECS2024)

P a g e 84 | 97

Advantages of Bubble Sort

1. Easily understandable.

2. Does not necessitate any extra memory.

3. The code can be written easily for this algorithm.

4. Minimal space requirement than that of other sorting algorithms.

Disadvantages of Bubble Sort

1. It does not work well when we have large unsorted lists, and it necessitates more

resources that end up taking so much of time.

2. It is only meant for academic purposes, not for practical implementations.

3. It involves the n2 order of steps to sort an algorithm.

2)Insertion sort:

In this Experiment, we will discuss the Insertion sort Algorithm. The working procedure of

insertion sort is also simple. This article will be very helpful and interesting to students as

they might face insertion sort as a question in their examinations. So, it is important to

discuss the topic.

Insertion sort works similar to the sorting of playing cards in hands. It is assumed that the

first card is already sorted in the card game, and then we select an unsorted card. If the

selected unsorted card is greater than the first card, it will be placed at the right side;

otherwise, it will be placed at the left side. Similarly, all unsorted cards are taken and put in

their exact place.

The same approach is applied in insertion sort. The idea behind the insertion sort is that first

take one element, iterate it through the sorted array. Although it is simple to use, it is not

appropriate for large data sets as the time complexity of insertion sort in the average case

and worst case is O(n2), where n is the number of items. Insertion sort is less efficient than

the other sorting algorithms like heap sort, quick sort, merge sort, etc.

Algorithm

The simple steps of achieving the insertion sort are listed as follows -

Step 1 - If the element is the first element, assume that it is already sorted. Return 1.

Step2 - Pick the next element, and store it separately in a key.

Step3 - Now, compare the key with all elements in the sorted array.

Data Structures Lab (ECS2024)

P a g e 85 | 97

Step 4 - If the element in the sorted array is smaller than the current element, then move to

the next element. Else, shift greater elements in the array towards the right.

Step 5 - Insert the value.

Step 6 - Repeat until the array is sorted.

Example

Let the elements of array are -

Initially, the first two elements are compared in insertion sort.

Here, 31 is greater than 12. That means both elements are already in ascending order.

So, for now, 12 is stored in a sorted sub-array.

Now, move to the next two elements and compare them.

Here, 25 is smaller than 31. So, 31 is not at correct position. Now, swap 31 with 25.

Along with swapping, insertion sort will also check it with all elements in the sorted

array.

For now, the sorted array has only one element, i.e. 12. So, 25 is greater than 12. Hence,

the sorted array remains sorted after swapping.

Now, two elements in the sorted array are 12 and 25. Move forward to the next elements

that are 31 and 8.

Data Structures Lab (ECS2024)

P a g e 86 | 97

Both 31 and 8 are not sorted. So, swap them.

After swapping, elements 25 and 8 are unsorted.

So, swap them.

Now, elements 12 and 8 are unsorted.

So, swap them too.

Now, the sorted array has three items that are 8, 12 and 25. Move to the next items that

are 31 and 32.

Hence, they are already sorted. Now, the sorted array includes 8, 12, 25 and 31.

Move to the next elements that are 32 and 17.

17 is smaller than 32. So, swap them.

Data Structures Lab (ECS2024)

P a g e 87 | 97

Swapping makes 31 and 17 unsorted. So, swap them too.

Now, swapping makes 25 and 17 unsorted. So, perform swapping again.

Now, the array is completely sorted.

1)Time Complexity

• Best Case Complexity - It occurs when there is no sorting required, i.e. the array is

already sorted. The best-case time complexity of insertion sort is O(n).

Data Structures Lab (ECS2024)

P a g e 88 | 97

• Average Case Complexity - It occurs when the array elements are in jumbled order

that is not properly ascending and not properly descending. The average case time

complexity of insertion sort is O(n2).

• Worst Case Complexity - It occurs when the array elements are required to be sorted

in reverse order. That means suppose you have to sort the array elements in ascending

order, but its elements are in descending order. The worst-case time complexity of

insertion sort is O(n2).

2)Space Complexity

Advantages Of Insertion sort

• Simple implementation

• Efficient for small data sets

• Adaptive, i.e., it is appropriate for data sets that are already substantially sorted.

Disadvantages Of Insertion sort

• Inefficient for large data sets

• Requires more writes

• Worst-case time complexity

Conclusion:

Sorting algorithms are essential in data structures.

- Bubble sort compares adjacent elements.

- Selection sort compare data and sort them

Data Structures Lab (ECS2024)

P a g e 89 | 97

Sample Program

 (Bubble sort)

#include <stdio.h>

void bubble_sort(int arr[], int n) {

 int i, j;

 for (i = 0; i < n - 1; i++) {

 for (j = 0; j < n - i - 1; j++) {

 if (arr[j] > arr[j + 1]) {

 int temp = arr[j];

 arr[j] = arr[j + 1];

 arr[j + 1] = temp;

 }

 }

 }

}

int main() {

 int arr[] = {64, 34, 25, 12, 22, 11, 90};

 int n = sizeof(arr) / sizeof(arr[0]);

 bubble_sort(arr, n);

 printf("Sorted array: ");

 for (int i = 0; i < n; i++) {

 printf("%d ", arr[i]);

 }

 return 0;

}

Output

Data Structures Lab (ECS2024)

P a g e 90 | 97

Insertion sort

#include <stdio.h>

void insertionSort(int arr[], int n) {

 int i, key, j;

 for (i = 1; i < n; i++) {

 key = arr[i];

 j = i - 1;

 while (j >= 0 && arr[j] > key) {

 arr[j + 1] = arr[j];

 j = j - 1;

 }

 arr[j + 1] = key;

 }

}

int main() {

 int arr[] = { 12, 11, 13, 5, 6 };

 int n = sizeof(arr) / sizeof(arr[0]);

 insertionSort(arr, n);

 for (int i = 0; i < n; i++)

 printf("%d ", arr[i]);

 printf("\n");

 return 0;

}

Output

Data Structures Lab (ECS2024)

P a g e 91 | 97

Experiment No-9

Aim:

Write code and understand the concept Algorithm Technique on Greedy Approach

Theory:

Greedy Approach

The greedy method is one of the strategies like Divide and conquer used to solve the

problems. This method is used for solving optimization problems. An optimization problem

is a problem that demands either maximum or minimum results. Let's understand through

some terms.

The Greedy method is the simplest and straightforward approach. It is not an algorithm, but

it is a technique. The main function of this approach is that the decision is taken on the basis

of the currently available information. Whatever the current information is present, the

decision is made without worrying about the effect of the current decision in future.

This technique is basically used to determine the feasible solution that may or may not be

optimal. The feasible solution is a subset that satisfies the given criteria. The optimal solution

is the solution which is the best and the most favourable solution in the subset. In the case

of feasible, if more than one solution satisfies the given criteria then those solutions will be

considered as the feasible, whereas the optimal solution is the best solution among all the

solutions

Components of Greedy Algorithm:

The components that can be used in the greedy algorithm are:

• Candidate set: A solution that is created from the set is known as a candidate set.

• Selection function: This function is used to choose the candidate or subset which can

be added in the solution.

• Feasibility function: A function that is used to determine whether the candidate or

subset can be used to contribute to the solution or not.

• Objective function: A function is used to assign the value to the solution or the partial

solution.

• Solution function: This function is used to intimate whether the complete function has

been reached or not.

Applications of Greedy Algorithm:

1. We use Greedy Algorithms in our day to day life to find minimum number of coins or

notes for a given amount. We fist begin with largest denomination and try to use

maximum number of the largest and then second largest and so on.

Data Structures Lab (ECS2024)

P a g e 92 | 97

2. Dijkstra’s shortest path algorithm: Finds the shortest path between two nodes in a

graph.

3. Kruskal’s and Prim’s minimum spanning tree algorithm: Finds the minimum

spanning tree for a weighted graph. Minimum Spanning Trees are used in Computer

Networks Designs and have many real world applications

4. Huffman coding: Creates an optimal prefix code for a set of symbols based on their

frequencies.

5. Fractional knapsack problem: Determines the most valuable items to carry in a

knapsack with a limited weight capacity.

6. Activity selection problem: Chooses the maximum number of non-overlapping

activities from a set of activities.

7. Job Sequencing and Job Scheduling Problems.

8. Finding close to the optimal solution for NP-Hard problems like TSP. ide range of

network design problems, such as routing, resource allocation, and capacity planning.

9. Machine learning: Greedy algorithms can be used in machine learning applications,

such as feature selection, clustering, and classification. In feature selection, greedy

algorithms are used to select a subset of features that are most relevant to a given

problem. In clustering and classification, greedy algorithms can be used to optimize the

selection of clusters or classes

10. Image processing: Greedy algorithms can be used to solve a wide range of image

processing problems, such as image compression, denoising, and segmentation. For

example, Huffman coding is a greedy algorithm that can be used to compress digital

images by efficiently encoding the most frequent pixels.

Key Characteristics:

• Greedy algorithms are simple and easy to implement.

• They are efficient in terms of time complexity, often providing quick solutions. Greedy

Algorithms are typically preferred over Dynamic Programming for the problems where

both are applied. For example, Jump Game problem and Single Source Shortest Path

Problem (Dijkstra is preferred over Bellman Ford where we do not have negative

weights)..

• These algorithms do not reconsider previous choices, as they make decisions based on

current information without looking ahead.

https://www.geeksforgeeks.org/minimum-number-of-jumps-to-reach-end-of-a-given-array/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/
https://www.geeksforgeeks.org/bellman-ford-algorithm-dp-23/

Data Structures Lab (ECS2024)

P a g e 93 | 97

Advantages of Greedy Algorithms

• Simple and easy to understand: Greedy algorithms are often straightforward to

implement and reason about.

• Efficient for certain problems: They can provide optimal solutions for specific

problems, like finding the shortest path in a graph with non-negative edge weights.

• Fast execution time: Greedy algorithms generally have lower time complexity

compared to other algorithms for certain problems.

• Intuitive and easy to explain: The decision-making process in a greedy algorithm is often

easy to understand and justify.

• Can be used as building blocks for more complex algorithms: Greedy algorithms can be

combined with other techniques to design more sophisticated algorithms for challenging

problems.

Disadvantages of the Greedy Approach:

• Not always optimal: Greedy algorithms prioritize local optima over global optima,

leading to suboptimal solutions in some cases.

• Difficult to prove optimality: Proving the optimality of a greedy algorithm can be

challenging, requiring careful analysis.

• Sensitive to input order: The order of input data can affect the solution generated by

a greedy algorithm.

• Limited applicability: Greedy algorithms are not suitable for all problems and may

not be applicable to problems with complex constraints.

Fractional Knapsack Problem Using a Greedy Algorithm

Given the weights and profits of N items, in the form of {profit, weight} put these items in

a knapsack of capacity W to get the maximum total profit in the knapsack. In Fractional

Knapsack, we can break items for maximizing the total value of the knapsack.

Input: arr[] = {{60, 10}, {100, 20}, {120, 30}}, W = 50

Output: 240

Explanation: By taking items of weight 10 and 20 kg and 2/3 fraction of 30 kg.

Hence total price will be 60+100+(2/3)(120) = 240

Input: arr[] = {{500, 30}}, W = 10

Output: 166.667

Data Structures Lab (ECS2024)

P a g e 94 | 97

Conclusion:

The Greedy Approach is a useful algorithm technique for solving optimization problems.

- Makes locally optimal choices.

- Hopes for global optimality.

- No backtracking.

 Sample Program

Fractional Knapsack Problem Using a Greedy Algorithm

#include <stdio.h>

struct Item {

 int value;

 int weight;

 float ratio;

};

// Function to compare two items based on their value-to-weight ratio

int compare(const void* a, const void* b) {

 struct Item* item1 = (struct Item*)a;

 struct Item* item2 = (struct Item*)b;

 if (item1->ratio < item2->ratio) {

 return 1;

 } else if (item1->ratio > item2->ratio) {

 return -1;

 }

 return 0;

}

Data Structures Lab (ECS2024)

P a g e 95 | 97

// Function to solve the Fractional Knapsack problem

float fractionalKnapsack(int W, struct Item items[], int n) {

 // Sort items based on value-to-weight ratio in descending order

 qsort(items, n, sizeof(struct Item), compare);

 int currentWeight = 0; // Current weight of the knapsack

 float totalValue = 0.0; // Total value in the knapsack

 // Loop through all items

 for (int i = 0; i < n; i++) {

 // If adding the full item doesn't exceed capacity, take the full item

 if (currentWeight + items[i].weight <= W) {

 currentWeight += items[i].weight;

 totalValue += items[i].value;

 } else {

 // If we can't take the full item, take the fraction of it

 int remainingWeight = W - currentWeight;

 totalValue += items[i].value * ((float)remainingWeight / items[i].weight);

 break; // Knapsack is full

 }

 }

 return totalValue;

}

int main() {

 int n, W;

 // Input number of items and the capacity of the knapsack

 printf("Enter number of items: ");

Data Structures Lab (ECS2024)

P a g e 96 | 97

 scanf("%d", &n);

 printf("Enter the capacity of the knapsack: ");

 scanf("%d", &W);

 struct Item items[n];

 // Input values and weights of the items

 printf("Enter value and weight for each item (value weight):\n");

 for (int i = 0; i < n; i++) {

 scanf("%d %d", &items[i].value, &items[i].weight);

 // Calculate value-to-weight ratio

 items[i].ratio = (float)items[i].value / items[i].weight;

 }

 // Calculate maximum value achievable

 float maxValue = fractionalKnapsack(W, items, n);

 printf("Maximum value in Knapsack = %.2f\n", maxValue);

 return 0;

}

Output

Data Structures Lab (ECS2024)

P a g e 97 | 97

